Discrete logarithms using Reed-Solomon codes

D. Augot, F. Morain

2012/05/09

Contents

I. Hardness of decoding Reed-Solomon Codes.
II. Cheng/Wan and the connection with the discrete logarithm.
III. The direct way: using decoding algorithms for the discrete log. problem.

Reed-Solomon codes

- Fix $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathbb{F}_{q}$.

Evaluation map:

$$
\begin{aligned}
\operatorname{ev}_{S}: \mathbb{F}_{q}[X] & \rightarrow \mathbb{F}_{q}^{n} \\
f(X) & \mapsto\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

- Given k, the k-dimensional Reed-Solomon code $R S(S, k)$ is

$$
\left\{c=\operatorname{ev}_{S}(f(X)) \mid f(X) \in \mathbb{F}_{q}[X], \operatorname{deg} f(X)<k\right\}
$$

- We say that $f(X)$ is at Hamming distance τ from $y=\left(y_{1}, \ldots, y_{n}\right)$ if

$$
\left|\left\{i \in[1 \ldots n] \mid f\left(x_{i}\right) \neq=y_{i}\right\}\right| \leq \tau
$$

or equivalently: $f(X)$ is μ-close to y, with $\mu+\tau=n$

$$
\left|\left\{i \in[1 \ldots n] \mid f\left(x_{i}\right)=y_{i}\right\}\right| \geq \mu
$$

(μ matching positions)

Decoding of Reed-Solomon codes

(List-decoding) problem: of $\operatorname{RS}(S, k)$
Given k and τ, and $\mu=n-\tau$. For $y \in \mathbb{F}_{q}^{n}$, find
$F_{\tau}(y)=\left\{f(X) \in \mathbb{F}_{q}[X] ; \quad \operatorname{deg} f(X)<k ; \quad d\left(\operatorname{ev}_{S} f(X), y\right) \leq \tau\right\}$.
When $n-\tau=\mu<k$, there are exponentially many solutions:
$n-k$ is the covering radius.
Prop. (Unique decoding) Let $\mu \geq \frac{k+n}{2}$. Then, for any $y \in \mathbb{F}_{q}^{n}$,

$$
\left|F_{\tau}(y)\right| \leq 1 .
$$

Prop. (List decoding, "Johnson bound") Let $\mu>\sqrt{n(k-1)}$ be given. Then, for any $y \in \mathbb{F}_{q}^{n}$,

$$
\left|F_{\tau}(y)\right| \leq \text { is "small", }
$$

I.e. constant or $O\left(n^{2}\right)$, when k / n is constant and n growing.

Hardness of maximum-likelihood decoding

The maximum-likelihood (ML) decisional problem is:
Given a code $C \subset \mathbb{F}_{q}^{n}$, given y, given τ, does there exist $c \in C$ such that $d(c, y) \leq \tau$.

- NP-complete for general linear codes (Berlekamp et al. 1978).
- Also for Reed-Solomon codes (Guruswami-Vardy 2005).
- An amusing consequence is that "deciding deep-holes" is hard.
(Deep-holes are to Reed-Solomon codes what bent functions are to first order Reed-Muller codes:
words as far as possible from the code)
The polynomial reconstruction problem was previously recognized hard (Goldreich-Rubinfeld-Sudan 1995-2000).

Coding theory basic questions

All these hardness results do not concern real-life codes:

- What about the size of the field ? Guruswami-Vardy: alphabet size exponential in n.
- What about the "support set" S ? We would like $S=\mathbb{F}_{q}^{*}$ (cylic codes)

Guruswami-Vardy: only a tiny subset of \mathbb{F}_{q}^{*} is used.

- What about the rate k / n ?

Arbitrary
No proofs for cyclic Reed-Solomon codes.

Unsolved related questions

One would like to know for which radius the problem is hard.

- Provide a radius $\tau=\tau(n, k, q)$ such that decoding RS codes up to radius τ is hard.
- Guruswami-Sudan polynomial-time for $\tau \leq n-\sqrt{(k-1) n}$. No proof that it is the hardness threshold.

Guruswami-Rudra 2006. Some hints that it is.

- Find τ, and onstruct a word y in $\mathbb{F}_{q}^{n} \tau$-far from the RS code such that there is many codewords in the ball of radius τ centered in y.

> Justesen-Høholdt 2001,
> BenSasson-Koparty-Radhakrishnan 2006.

Only partial results, for some classes for codes.

Reed-Solomon codes as crypto-objects ?

"Come on, $\mathbb{F}_{2^{8}}$ is so small".

- Actually, dealing with $R S_{q}(n, k)$ may be a big deal.
- q^{k} can be cryptographically large. The standard $R S_{256}(255, k)$ code has size $2^{8 k}$.
- When the realm of computer-algebra style algorithms is left i.e. $\tau>n-\sqrt{(k-1) n}$, no efficient decoding.
- Difficult to trapdoor. Even Generalised Reed-Solomon codes. Sidelnikov-Chestakov 1992.

Some efforts: A.-Finiasz 2003, Kiayias-Yung 2000Many uses for other primitives: secret-sharing, proof of retrievability, etc.

Cheng-Wan line of work

- Connection between the decoding problem Reed-Solomon codes over \mathbb{F}_{q}, and the DLP in \mathbb{F}_{q}^{h}.
- More standard codes.
- Weaker hardness result.

Complexity for discrete logarithm over finite fields, with $x=\mathcal{Q}=\left|\mathbb{F}_{q^{n}}\right|$

$$
L_{x}[\alpha, c]=\exp \left(c(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)
$$

So-called "sub-exponential"

$$
\begin{cases}\text { polynomial } & \alpha=0 \\ \text { exponential } & \alpha=1\end{cases}
$$

Standard $\alpha=1 / 2$, better is $\alpha=1 / 3$.

Results

- 2004: Reduction in randomized polynomial time (in q) of DLP in $\mathbb{F}_{q^{n}}$ to the ML-decoding of a standard RS code $[q, k,]_{q}$.

$$
\text { In particular } k \leq \sqrt{q}-h . \text { Vanishing rates. }
$$

- 2010: No algorithm polynomial (in q) for the DLP over $\mathbb{F}_{q^{2 n}}$, with $h \leq q^{0.4}$.
\Downarrow
No polynomial time ML-decoding for the standard RS code [$q, k(q)$], where

$$
\sqrt{q} \leq k(q) \leq q-\sqrt{q} .
$$

Any rate $k / q \in(0,1)$.

From a "factoring" problem to a decoding problem

- Consider $\mathbb{F}_{q^{h}}$ a field extension,
- $Q(X) \in \mathbb{F}_{q}[X]$ is monic irreducible, with $\operatorname{deg} Q(X)=h$,
- $\mathbb{F}_{q^{h}}=\mathbb{F}_{q}[X] / Q(X)=\mathbb{F}_{q}[\bar{X}]$.
- Let $S \subset \mathbb{F}_{q}$ have size $n \leq q$.

Proposition

There exists $A \subset S,|A|=\mu>h$, such that

$$
f(X) \equiv \prod_{a \in A}(X-a) \bmod Q(X)
$$

if and only if the word

$$
y=\operatorname{ev}_{S}\left(-f(X) / Q(X)-X^{k}\right)
$$

is exactly at distance $\tau=n-\mu$ from the Reed-Solomon code $\operatorname{RS}(S, k)$ of dimension $k=\mu-h$.

Proof

- Suppose that there exists $A \subset S,|A|=\mu$, such that

$$
\prod_{a \in A}(X-a) \equiv f(X) \bmod Q(X)
$$

- There exists $t(X) \in F[X], \operatorname{deg} t(X)=\mu-h=k$, such that

$$
\prod_{a \in A}(X-a)=f(X)+t(X) Q(X)
$$

- Writing $t(X)=X^{k}+r(X)$, with $\operatorname{deg} r(X)<k$:

$$
\begin{aligned}
\prod_{a \in A}(X-a) & =f(X)+\left(X^{k}+r(X)\right) Q(X) \\
r(X) & =-\frac{f(X)}{Q(X)}-X^{k}+\frac{\prod_{a \in A}(X-a)}{Q(X)},
\end{aligned}
$$

thus $r(a)=-f(a) / Q(a)-a^{k}$, for $a \in A$.

- Since $|S|=\mu, y=\operatorname{ev}_{S}\left(-f(X) / Q(X)-X^{k}\right)$ is at distance $n-\mu$ from $\operatorname{ev}_{S}(r(X)) \in \operatorname{RS}(S, k)$.

Where is the discrete logarithm problem ?

Suppose that \bar{X} is the basis for the logarithms.

- When $f(X) \equiv X^{u} \bmod Q(X)$, an equation

$$
\begin{equation*}
\prod_{a \in A}(X-a)=f(X) \equiv X^{u} \bmod Q(X) \tag{1}
\end{equation*}
$$

with $A \subset S$, is called a relation.

- Then (1) gives a relation between the logs:

$$
\sum_{a \in A} \log (\bar{X}-a)=u \bmod \left(q^{h}-1\right)
$$

- Collecting $n=|S|$ such relations gives a linear system, among whose solutions are the $\log (\bar{X}-a)$.

Still! Where is the discrete logarithm problem ?

- When all the $\log (\bar{X}-a)$, for $a \in S$ are known, then finding the logarithm of a particular $f(\bar{X})$ can be done by considering

$$
\bar{X}^{u} f(\bar{X})
$$

for a random u and trying to find a decomposition

$$
\begin{equation*}
\prod_{a \in A}(X-a) \equiv f(X) X^{u} \bmod Q(X) \tag{2}
\end{equation*}
$$

which gives

$$
\log (f(\bar{X}))=\sum_{a \in A} \log (\bar{X}-a)-u
$$

- Repeat with random u's until a decomposition (2) if found.

Reed-Solomon based index calculus: First phase Auxiliary $S \subset \mathbb{F}_{q},|S|=n$.

1. (Randomize) Compute $f(X) \leftarrow X^{u} \bmod Q(X)$ for a random $u \in \mathbb{Z} /\left(q^{h}-1\right) \mathbb{Z}$.
2. (Decompose-Decode) Find a subset $A \subset S,|A|=\mu$, such that

$$
f(X) \equiv \prod_{a \in A}(X-a) \bmod Q(X)
$$

3. If it exists, add the line

$$
u \equiv \sum_{a \in A} \log (\bar{X}-a) \bmod \left(q^{h}-1\right)
$$

to a linear system with unknowns the $\log (\bar{X}-a)$.
4. If we have less than n relations, goto 1 .
5. (Linear algebra) solve the $n \times n$ linear system over $\mathbb{Z} /\left(q^{h}-1\right) \mathbb{Z}$, which yields the $\log c(\bar{X}), c(X) \in S$.

If not full rank, goto to 1 to get new relations.

Reed-Solomon based index calculus: Second phase

Second phase (online): "target" is $\zeta=z(\bar{X})$,

1. (Decompose-decode) find u and $A \subset S$ such that

$$
z(X) X^{u} \equiv \prod_{c \in A} \log (X-a) \bmod Q(X)
$$

2. Then $\log z(\bar{X}) \equiv-u+\sum_{c \in A} \log c(\bar{X}) \bmod \left(q^{h}-1\right)$.

Typical complexity analysis

- 1st phase takes

$$
O\left(n \cdot(1 / \pi) \cdot n^{\delta}\right)+O\left(n^{\nu}\right)
$$

$\pi=$ probability of successful decomposition
$n^{\delta}=$ cost of testing/finding a decomposition
$n^{\nu}=$ linear algebra

- 2nd phase takes $O\left((1 / \pi) \cdot n^{\delta}\right)$.
- Goal: find parameters to minimize the total time.

Example: Adleman (1/2)

- Consider $S=\left\{P(X) \in \mathbb{F}_{q}[X]\right.$, irreducible of degree $\left.\leq e\right\}$,

$$
n=|S| \approx \frac{q^{e+1}}{e}
$$

- We have to consider the probability π that a random polynomial of degree $\leq D$ has all its factors in S :

$$
\pi=\frac{N_{q}(D, e)}{q^{D}}
$$

where $N_{q}(D, e)$ is
$\mid\left\{P \in \mathbb{F}_{q}[X], \operatorname{deg}(P) \leq D\right.$, all factors of P have degree $\left.\leq e\right\} \mid$.

- Thm. $\pi \approx(D / e)^{-(1+o(1)) D / e}$ (if D and e grow together).

Adleman (2/2)

- Let δ and ν be the exponents for factorization and linear algebra. The cost is:

$$
O\left(n \cdot n^{\delta} / \pi\right)+O\left(n^{\nu}\right)
$$

- Balance the costs:

$$
(\nu-(\delta+1)) \log n=-\log \pi
$$

- Using

$$
\log B_{e} \approx e \log q, \quad \log \pi \approx-(D / e) \log (D / e)
$$

leads to

$$
(\nu-(\delta+1)) e \log q=\frac{D}{e} \log \frac{D}{e}
$$

- Some workout gives $e=c D^{\alpha}(\log D)^{\beta}$, with $\alpha=\beta=1 / 2$.
- Complexity then is

$$
\exp (c \sqrt{h \log q \log (h \log q)})=L_{q^{h}}[1 / 2, c]
$$

Cheng/Wan in a direct way

1. Use known decoding algorithms of Reed-Solomon codes pour the general framework;
2. We do not pretend at providing a ML-decoding of Reed-Solomon codes;
3. Approaching it for $k / n \rightarrow 1$?

Galand-Fontaine 2009 (for steganography).
Use a device for beaking discrete logarithms over $\mathbb{F}_{2^{h}}$:

- Xilinx ISE Software. Reed-Solomon Decoder v8.0. 1 input symbol /clock cycle for \mathbb{F}_{256}.
- Aha G709D-40 40 Gbits/sec [255, 239, _] Reed-Solomon Decoder Core

$$
\approx 2 \times 10^{7} \text { decodings } / \mathrm{sec}
$$

Algorithms for unique decoding

We have a "computer algebra view" of Reed-Solomon codes.

- "Berlekamp-Welch": $O\left(n^{3}\right)$;
- Key equation: $O\left(n^{2}\right)$. Berlekamp-Massey, or EEA (Sugiyama et al.);
- Gao, EEA.

We have chosen Gao's algorithm, which appears to us the easiest to connect to "fast algorithms" from computer algebra.
e.g. von zur Gathen and Gerhard's Computer algebra.

Our aim: find the error-locator polynomial

$$
\tau(X)=\prod_{y_{i} \neq f\left(a_{i}\right)}\left(X-a_{i}\right)
$$

or, equivalently,

$$
\mu(X)=\prod_{y_{i}=f\left(a_{i}\right)}\left(X-a_{i}\right) .
$$

We do not care about the "message polynomial".

Gao1a: basic version

$$
\text { Input : }\left(x_{i}\right) \in \mathbb{F}_{q}^{n},\left(y_{i}\right) \in \mathbb{F}_{q}^{n}, k \text {, and thus } d=n-k+1
$$

Precomp. Compute $G(X)=\prod_{i=1}^{n}\left(X-x_{i}\right)$.
Output the error locator polynomial $\tau(x)$ or failure.

1. (Interpolation) Compute $I(X)$ such that $I\left(x_{i}\right)=y_{i}$ for all i.
2. (Partial gcd) Perform PartialEEA with inputs $s_{0}=G \div X^{k}$ (of degree $d-1$),
$s_{1}=I \div X^{k}($ of degree $\leq d-2)$
Stop when

$$
g(X)=u(X) s_{0}(X)+v(X) s_{1}(X)
$$

has $\operatorname{deg}(g)<(d-1) / 2$.
3. (Division) Compute $r(X)=G(X)$ rem $v(X)$
4. If $r(X)=0$, return $\tau(X)=v(X)$, else return failure.

Complexity analysis of Gao1a

Total time is

$$
T_{G}+T_{G \div X^{k}}+T_{l \div X^{k}}+T_{P E E A}+T_{v \mid G ?}
$$

Rem. Faster version Gao1a useful when $d \ll n$, which is our case; also faster when almost all decoding attempts have to fail!

We need an algorithm which fails fast.

Numerical example I

- Consider $\mathbb{F}_{13^{3}}=\mathbb{F}_{13}[X] /\left(X^{3}+2 X+11\right)$. The support is $S=\{0,1, \ldots, 12\}$.
- We use \mathbb{F}_{13}, and $(n, k, d)=(13,7,10)$, which gives $\mu=7$.
- Consider for instance X^{15}. We have to decode the word:
$y=\operatorname{ev}_{S}\left(-X^{15} / Q(X)-X^{7}\right)=(7,1,1,0,1,3,6,8,9,12,4,11,10)$.
- The PartialEEA procedure yields

$$
u(X)=X^{2}+5 X+3, v(X)=5 X^{3}+2 X^{2}+3, g(X)=7 X+6
$$

And the polynomial v factors as $(X-3)(X-8)(X-12)$, so that

$$
X^{15}(X-3)(X-8)(X-12) \equiv G(X) \bmod (Q(X), 13)
$$

Numerical example II

Write $13^{3}-1=2^{2} \cdot 3^{2} \cdot 61$ (Pohlig-Hellman).
Logarithms modulo 2^{2} and 3^{2} are easy to compute.
The matrix M modulo 61 is

$$
M=\left(\begin{array}{cccccccccccccc}
15 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
19 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
33 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
40 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
48 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
51 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
15 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
25 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
31 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
36 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
48 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
14 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
16 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
17 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
22 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
24 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
27 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

A solution is $V=(135224579415442274135536)^{T} \bmod 61$. LDPC codes ? Designs ?

Numerical example III

Computing the logarithm of $X^{2}+1$ is done using the relation

$$
\left(X^{2}+1\right) X \equiv G(X) /((X(X-2)(X-8))) \bmod Q(X)
$$

and therefore

$$
\log \left(X^{2}+1\right)=417
$$

using the Chinese remaindering theorem.
(Note that this is a toy example, the logarithm of $X^{2}+1$ could have been computed in different ways, factoring it over the factor base directly for instance.)

Almost all decoding attempts have to fail ?

Proposition

There exists $A \subset S,|A|=\mu$, such that

$$
f(X) \equiv \prod_{a \in A}(X-a) \bmod Q(X)
$$

if and only if the word

$$
y=\operatorname{ev}_{S}\left(-f(X) / Q(X)-X^{k}\right)
$$

is exactly at distance $n-\mu$ from the Reed-Solomon code $\operatorname{RS}_{s}(k)$ of dimension $k=\mu-h$ and support S.

We have a $[n, k, n-k+1]$ Reed-Solomon code, and we want to decode it up to radius $n-k-h$.

Problem: find $S, n=|S|, \mu$.

Density

- Case $n-k$ even. Unique Decoding gives $t=\frac{n-k}{2}, \mu=\frac{n+k}{2}$.
- We also have $k=\mu-h$. This gives

$$
k=n-2 h, \quad \tau=h .
$$

- High rate or small rate ?

- Formula for the density

$$
\frac{V_{q}\left(n, \frac{n-k}{2}\right) \times q^{k}}{q^{n}}
$$

which is not exponentially small for $k \approx n$.

Oddities

- We look for relations, for $f(X)$ and with $|A|=\mu>h$:

$$
\begin{equation*}
f(X) \equiv \prod_{a \in A}(X-a) \bmod Q(X) \tag{3}
\end{equation*}
$$

It is the RHS $\prod_{a \in A}(X-a)$ which is reduced $\bmod Q(X)$.

- Unique decoding implies no collisions between the

$$
\prod_{a \in A}(X-a) \bmod Q(X)
$$

- Thus we get a probability of

$$
\frac{\binom{n}{\mu}}{q^{h}}=\frac{\binom{n}{\tau}}{q^{h}}=\frac{\binom{n}{h}}{q^{h}}
$$

Analysis

- Recall that the cost is:

$$
O\left(n \frac{1}{\varpi}(M(n)+M(h) \log h)+n h M(h) \log q\right)+O\left(h \cdot n^{2} M(h)\right)
$$

with

$$
\pi=\frac{\binom{n}{h}}{\mathcal{Q}} .
$$

- For h constant and n going to infinity: $\pi \approx \frac{n^{\tau}}{h!\cdot \mathcal{Q}}$.
- If $n>\log q$ and $n>h$, the cost simplifies to

$$
O\left(h!(q / n)^{h} n M(n)\right)+O\left(h \cdot n^{2} M(h)\right)
$$

and the first term always dominates.

- Picking $n=q$, we get

$$
O(h!\cdot q M(q))
$$

Sub-exp behaviour?

- Case $h \ll q$, and growing very slowing, with $\mathcal{Q}=q^{h}$.
- The cost being $\tilde{O}\left(h!\cdot q^{2}\right)$, we look for $0 \leq \alpha<1$ such that

$$
2 \log q+h \log h \simeq c(\log \mathcal{Q})^{\alpha}(\log \log \mathcal{Q})^{1-\alpha}
$$

- Making also the hypothesis that $h \ll \log q$ implies

$$
\begin{aligned}
2 \frac{\log \mathcal{Q}}{h} & \simeq c(\log \mathcal{Q})^{\alpha}(\log \log \mathcal{Q})^{1-\alpha} \\
h & =\left(\frac{2 \log \mathcal{Q}}{c \log \log \mathcal{Q}}\right)^{1-\alpha} \\
& \simeq\left(\frac{2 \log q}{c \log \log q}\right)^{1 / \alpha-1}
\end{aligned}
$$

- To respect the hypothesis $h \ll \log q$, we must have $\alpha \geq 1 / 2$. Not my cup of tea...

Conclusion?

Things we do:

- Incremental version: $X^{u} \rightarrow X^{u+1}$ enables to perform incremental decoding, many other tricks.
- Galois actions using extension fields: one can then use $n>q$: this corresponds to codes over extension fields.

Things we may do:

- Use multiplicities to get relations $\prod(X-a)^{e_{a}}$, with $e_{a} \in\{1,2\}$.

Derivative codes (Guruswami-Wang, Beelen), better probabilities, Berlekamp-Welch easy, Gao not so clear (to me).

- Use list decoding at the opposite end of the spectrum $k / n \approx 0$.

Things we dream of:

- Link CRT codes to the case of \mathbb{F}_{p}.
- Elliptic curves. Connection between EC-DLP and decoding of AG codes, for $g=1$. (Cheng-Wan again).

Theorem-Cheng 2008

For any constant $c>0$, if there is an algorithm which in expected time $2^{c n}(\log q)^{O(1)}$ computes the minimum distance of any linear [$n, k,]_{q}$ code, then the ECDLP over \mathbb{F}_{q} can be solved in expected time q^{c}.

Recall that the generic attack has $c=1 / 2$.

Incremental computations

Prop. For u an integer, put
$f(X)=X^{u} \equiv c_{h-1} X^{h-1}+\cdots+c_{0} \bmod Q(X)$ and $f_{1}=X^{u+1} \bmod Q(X)$. Then

$$
\frac{f_{1}\left(a_{i}\right)}{Q\left(a_{i}\right)}=a_{i} \frac{f\left(a_{i}\right)}{Q\left(a_{i}\right)}-c_{h-1} .
$$

Interpolation: $I\left(a_{i}\right)=b_{i} \rightarrow I^{\prime}\left(a_{i}\right)=b_{i}^{\prime}$ with

$$
I^{\prime}(X)=X I(X)+X^{k+1}-X^{k}+c_{h-1} \bmod G(X)
$$

Very easy when $G(X)=X^{q}-X$.

