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Reed-Solomon codes

» Fix S = {x1,x,...,xn} € Fq.
Evaluation map:

evs . Fo[X] — Ty
f(X) — (f(x1),...,f(xn))

» Given k, the k-dimensional Reed-Solomon code RS(S, k) is
{c =evs(f(X)) | f(X)eFy[X], degf(X) < k}.
» We say that f(X) is at Hamming distance 7 from
y =1, yn)if
Hiel...n]| f(x)#=yi}| <.
or equivalently: f(X) is p-close to y, with p+7=n
(i€ [ nll F(o) = yi}l > o

(¢ matching positions)
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Decoding of Reed-Solomon codes
(List-decoding) problem: of RS(S, k)
Given k and 7, and p = n— 7. For y € Fg, find

Fr(y) = {f(X) € Fq[X]; degf(X) < ki d(evsf(X),y) <T}.

When n — 7 = u < k, there are exponentially many solutions:
n — k is the covering radius.

Prop. (Unique decoding) Let p > % Then, for any y € F7,

IFr(y)[ < 1.

Prop. (List decoding, “Johnson bound") Let ;x> /n(k — 1) be
given. Then, for any y € F7,

|Fr(y)| <is "small”,

l.e. constant or O(n?), when k/n is constant and n growing.
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Hardness of maximum-likelihood decoding

The maximum-likelihood (ML) decisional problem is:

Given a code C C Fg, given y, given T, does there exist
c € C such that d(c,y) <.

» NP-complete for general linear codes (Berlekamp et al.
1978).
» Also for Reed-Solomon codes (Guruswami-Vardy 2005).
» An amusing consequence is that “deciding deep-holes” is
hard.
(Deep-holes are to Reed-Solomon codes what bent
functions are to first order Reed-Muller codes:
words as far as possible from the code)

The polynomial reconstruction problem was previously recognized
hard (Goldreich-Rubinfeld-Sudan 1995-2000).
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Coding theory basic questions

All these hardness results do not concern real-life codes:

» What about the size of the field ?
Guruswami-Vardy: alphabet size exponential in n.

» What about the “support set” S 7 We would like S = [y,
(cylic codes)

Guruswami-Vardy: only a tiny subset of Fy is used.

» What about the rate k/n ?
Arbitrary

No proofs for cyclic Reed-Solomon codes.
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Unsolved related questions

One would like to know for which radius the problem is hard.

» Provide a radius 7 = 7(n, k, q) such that decoding RS codes
up to radius 7 is hard.
» Guruswami-Sudan polynomial-time for 7 < n— \/(k — 1)n.
No proof that it is the hardness threshold.
Guruswami-Rudra 2006. Some hints that it is.

» Find 7, and onstruct a word y in }Fg 7-far from the RS code
such that there is many codewords in the ball of radius 7
centered in y.

Justesen-Hgholdt 2001,
BenSasson-Koparty-Radhakrishnan 2006.

Only partial results, for some classes for codes.
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Reed-Solomon codes as crypto-objects 7

“Come on, Fys is so small”.

v

Actually, dealing with RS4(n, k) may be a big deal.
g* can be cryptographically large.
The standard RS»s6(255, k) code has size 28

v

v

When the realm of computer-algebra style algorithms is left

i.e. 7> n—/(k —1)n, no efficient decoding.

Difficult to trapdoor. Even Generalised Reed-Solomon codes.
Sidelnikov-Chestakov 1992.

v

Some efforts : A.-Finiasz 2003, Kiayias-Yung 2000-
Many uses for other primitives: secret-sharing, proof of
retrievability, etc.
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Cheng-Wan line of work

» Connection between the decoding problem Reed-Solomon
codes over Fg, and the DLP in F}.

» More standard codes.

> Weaker hardness result.
Complexity for discrete logarithm over finite fields, with
x=0= ’]th}
Ly[ev, c] = exp(c(log x)*(log log x)* ™).

So-called “sub-exponential”

polynomial «a =20
exponential a=1

Standard oo = 1/2, better is « = 1/3.
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Results

» 2004: Reduction in randomized polynomial time (in g) of
DLP in F s to the ML-decoding of a standard RS code

[, k; ]q-
In particular k < \/q — h. Vanishing rates.

> 2010: No algorithm polynomial (in g) for the DLP over FF s,
with h < ¢°%*.

4

No polynomial time ML-decoding for the standard RS code
[, k(q)], where

Va<k(q)<q-+a
Any rate k/q € (0,1).
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From a “factoring” problem to a decoding problem

Consider th a field extension,

Q(X) € Fq[X] is monic irreducible, with deg Q(X) = h,
Fyr = Fg[X]/Q(X) = Fy[X]

Let S C Fy have size n < g.

vV v.v .Yy

Proposition
There exists A C S, |A| = i > h, such that

F(X) = JJ(X — a) mod Q(X)

acA
if and only if the word
y = evs (—F(X)/Q(X) - x*)
is exactly at distance 7 = n — p from the Reed-Solomon code

RS(S, k) of dimension k =y — h.
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Proof
» Suppose that there exists A C S, |A| = p, such that

[I(X —a) = f(X) mod Q(X).
acA
» There exists t(X) € F[X], deg t(X) = u — h = k, such that
[Tx = a) = f(X) + t(X)Q(X).
acA
» Writing t(X) = X* + r(X), with deg r(X) < k:

[I(X = a) = F(X) + (X* + r(X)Q(X),
F(X)

acA
_ _\"M)_ yk HaEA(X — a)
r(X) = X X +—Q(X) ,
thus r(a) = —f(a)/Q(a) — a*, for a € A.
> Since |S| = p, y = evs (—(X)/Q(X) — X¥) is at distance
n — p from evs(r(X)) € RS(S, k).
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Where is the discrete logarithm problem 7

Suppose that X is the basis for the logarithms.
» When f(X) = X" mod Q(X), an equation

[I(X = a) = £(X) = X” mod Q(X) (1)

acA

with A C S, is called a relation.

» Then (1) gives a relation between the logs:

Zlog —a) =umod (¢" - 1).

acA

» Collecting n = |S| such relations gives a linear system,
among whose solutions are the log(X — a).
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Still I Where is the discrete logarithm problem 7

> When all the log(X — a), for a € S are known, then finding
the logarithm of a particular £(X) can be done by considering

X"f(X)
for a random wu and trying to find a decomposition

[IX = a) = F(X)X” mod Q(X) (2)
acA

which gives
log(f Z log(X

acA

» Repeat with random u's until a decomposition (2) if found.
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Reed-Solomon based index calculus: First phase
Auxiliary S C Iy, |S| = n.
1. (Randomize) Compute f(X) <= X" mod Q(X) for a random
uezZ/(gh-1)Z.
2. (Decompose-Decode) Find a subset A C S, |A| = u, such
that

F(X) = [[(X — 2) mod Q(X).
acA
3. If it exists, add the line

u—ZIog —a) mod (¢" —1).
acA

to a linear system with unknowns the log(X — a).
4. If we have less than n relations, goto 1.
5. (Linear algebra) solve the n x n linear system over
Z/(q" — 1)Z, which yields the log c(X), c(X) € S.
If not full rank, goto to 1 to get new relations.
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Reed-Solomon based index calculus: Second phase

Second phase (online): “target” is ¢ = z(X),
1. (Decompose-decode) find u and A C S such that

2(X)X" = [ log(X — a) mod Q(X)

ceA

2. Then log Z(Y) =—u+ ZCGA log C(Y) mod (qh —1).
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Typical complexity analysis

> 1st phase takes
O(n-(1/m) - n°) + O(n"),

7w = probability of successful decomposition
n® = cost of testing/finding a decomposition
n” = linear algebra

» 2nd phase takes O((1/7) - n°).

» Goal: find parameters to minimize the total time.
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Example: Adleman (1/2)

» Consider S = {P(X) € Fq[X], irreducible of degree < e},

e+1
n=|5~2

%

e

» We have to consider the probability 7 that a random
polynomial of degree < D has all its factors in S:

NCI(Dae)
T = T
where Ng(D, e) is

{P € Fq[X],deg(P) < D,all factors of P have degree < e}|.

> Thm. 7~ (D/e)~(1te(1)D/e (if D and e grow together).
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Adleman (2/2)

» Let § and v be the exponents for factorization and linear
algebra. The cost is:

O(n-n’/x) + O(n").
» Balance the costs:
(v—(6+1))logn= —logm.
> Using
log Be ~ elogq, logm~ —(D/e)log(D/e)

leads to D D
(v—(d+1))elogqg = - log —.
e
» Some workout gives e = cD%(log D)?, with o = 3 = 1/2.
» Complexity then is

exp(cy/hlog glog(hlog q)) = Lon[1/2,c]
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Cheng/Wan in a direct way

1. Use known decoding algorithms of Reed-Solomon codes pour
the general framework;

2. We do not pretend at providing a ML-decoding of
Reed-Solomon codes:

3. Approaching it for k/n — 17
Galand-Fontaine 2009 (for steganography).

Use a device for beaking discrete logarithms over Fy:

» Xilinx ISE Software. Reed-Solomon Decoder v8.0.
1 input symbol /clock cycle for Fasg.

» Aha G709D-40 40 Gbits/sec [255,239, | Reed-Solomon
Decoder Core
~ 2 x 107 decodings/sec.
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Algorithms for unique decoding
We have a “computer algebra view" of Reed-Solomon codes.
> “Berlekamp-Welch": O(n3);
» Key equation: O(n?). Berlekamp-Massey, or EEA (Sugiyama
et al.);
» Gao, EEA.

We have chosen Gao's algorithm, which appears to us the easiest
to connect to “fast algorithms” from computer algebra.

e.g. von zur Gathen and Gerhard's Computer algebra.

Our aim: find the error-locator polynomial
(X)= J[ (X-a)
yi#f(a;)
or, equivalently,
)= T (x-a).
yi=f(a;)

We do not care about the “"message polynomial”.
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Gaola: basic version

Input @ (x;) € Fg, (v;) € F, k, and thus d = n — k + 1.
Precomp. Compute G(X) =[], (X — xi).
Output the error locator polynomial 7(x) or failure.
1. (Interpolation) Compute /(X) such that /(x;) = y; for all i.

2. (Partial gcd) Perform PartialEEA with inputs
so = G + Xk (of degree d — 1),
s1 =1+ X¥ (of degree < d —2)
Stop when

g(X) = u(X)so(X) + v(X)s1(X)

has deg(g) < (d —1)/2.
3. (Division) Compute r(X)
4. 1f r(X) =0, return 7(X)

G(X)remv(X)

v(X), else return failure.
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Complexity analysis of Gaola

Total time is

TG + T(;%Xk + T[+Xk + TPEEA + TV|G?7

Rem. Faster version Gaola useful when d < n, which is our case
also faster when almost all decoding attempts have to fail!

We need an algorithm which fails fast.
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Numerical example |

» Consider F;33 = F13[X]/(X3 + 2X + 11). The support is
S=1{0,1,...,12}.
» We use Fi3, and (n, k, d) = (13,7, 10), which gives y =7.

» Consider for instance X', We have to decode the word:

y =evs(—XP®/Q(X) - X")=(7,1,1,0,1,3,6,8,9,12, 4,11, 10).
» The PartialEEA procedure yields

u(X) = X?+5X 43, v(X) =5X3+2X%+3, g(X) =7X +6,

And the polynomial v factors as (X — 3)(X — 8)(X — 12), so
that

XB(X = 3)(X —8)(X — 12) = G(X) mod (Q(X),13).
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Numerical example |

Write 133 — 1 = 22 . 32. 61 (Pohlig-Hellman).

Logarithms modulo 22 and 32 are easy to compute.

The matrix M modulo 61 is

o o o
HO0OO0OO0OOHHO0OO0O0OO0OO0OO0OO~HOO O
OH000000O0O0O-H0OO0OO0O0OO0O0OO
OO0 HO0OO0OO0OO-H-HOOOOHOOOO
0O00O0O0OHHHHHOOOOOO OO
HO0OOH—HO0OO0OHO0OO0OO0OO-HOOOOOOo
COHO0OOHOO-HOO-HOOOOO
OO0 00000000 HOOOO-HOO
0O0O000O0O0OHOOOHOOO OO
COHOHO0OO0OO0O0CO~OO—HO =
0O 000000 —HOO--HOOOO
OHOO0OO0OO0OOOO0OOOO0OOHOOOOO

OO0O-HO0OO0OHOOHOOO-HOO~OOO

DO MOV— o 000 ONNT N~
—HOS S0 HAOOTF A A NN N

135224579415442274135536)" mod 61.
(

LDPC codes ? Designs ?

A solution is V
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Numerical example Ill

Computing the logarithm of X2 + 1 is done using the relation
(X2 +1)X = G(X)/((X(X = 2)(X —8))) mod Q(X).

and therefore
log(X? 4 1) = 417,

using the Chinese remaindering theorem.

(Note that this is a toy example, the logarithm of X2 + 1 could
have been computed in different ways, factoring it over the factor
base directly for instance.)
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Almost all decoding attempts have to fail 7

Proposition
There exists A C S, |A| = u, such that

f(X) = [[(X — 2) mod Q(X)
acA
if and only if the word
y = evs (~F(X)/Q(X) - x*)
is exactly at distance n — p from the Reed-Solomon code RSs(k)

of dimension k = 1 — h and support S.

We have a [n, k,n — k + 1] Reed-Solomon code, and we
want to decode it up to radius n — k — h.

Problem: find S, n =[S

1/-*"-
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Density

» Case n — k even. Unique Decoding gives t =

» We also have k =yt — h. This gives
k=n—2h, 7=h.

» High rate or small rate ?
T

k
n

» Formula for the density
Va(n, 5%) x ¢
q"
which is not exponentially small for k = n.

i

x

28/35



Oddities

» We look for relations, for f(X) and with |A| = ;1 > h:
f(X)EH(X—a) mod Q(X) (3)
acA

It is the RHS ], (X — a) which is reduced mod Q(X).
» Unique decoding implies no collisions between the

[Ix = 2) mod Q(X)
acA

> Thus we get a probability of

G _ @ _ G

qh qh
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Analysis

» Recall that the cost is:

0] <n; (M(n) + M(h)log h) + nhM(h) log q) +0(h-n*>M(h)).
with

_ ()

ok

» For h constant and n going to infinity: m ~

h!-Q
» If n > logq and n > h, the cost simplifies to

O (h(a/n)"nM(n)) + O(h- n*M(h)),

and the first term always dominates.
> Picking n = g, we get
O(h! - gM(q)).
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Sub-exp behaviour ?

» Case h < q, and growing very slowing, with Q = g".
> The cost being O(h! - g?), we look for 0 < o < 1 such that

2log q + hlog h ~ c(log Q)*(log log Q)* ™,

» Making also the hypothesis that h < log g implies

2 ~ c(log Q)*(log log Q)*~%,

b 2log Q 1-a
~ \cloglogQ

_( 2loggq l/a—1
~ \cloglogg ’

» To respect the hypothesis h < log g, we must have oo > 1/2.

log Q
h

Not my cup of tea. ..
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Conclusion?
Things we do:
» Incremental version: X" — X“*1 enables to perform
incremental decoding, many other tricks.
» Galois actions using extension fields: one can then use
n > q: this corresponds to codes over extension fields.

Things we may do:

» Use multiplicities to get relations [ [(X —a)®, with e, € {1,2}.
Derivative codes (Guruswami-Wang, Beelen),
better probabilities, Berlekamp-Welch easy, Gao
not so clear (to me).

> Use list decoding at the opposite end of the spectrum
k/n=0.
Things we dream of:
» Link CRT codes to the case of [Fp,.

» Elliptic curves. Connection between EC-DLP and decoding
of AG codes, for g = 1. (Cheng-Wan again).
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Theorem—Cheng 2008

For any constant ¢ > 0, if there is an algorithm which in expected
time 2"(log q)o(l) computes the minimum distance of any linear
[n, k, _]q code, then the ECDLP over Fg can be solved in
expected time g°¢ .

Recall that the generic attack has ¢ =1/2.
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Incremental computations

Prop. For u an integer, put
F(X)=X"=cp_1 X" T+ 4 g mod Q(X) and
fi = X" mod Q(X). Then

fi(ai) f(a)

Q@) Q@)

Interpolation: /(a;) = bi — I’(a;) = bl with
I'(X) = XI(X) + Xk — XK 4+ ¢;,_1 mod G(X).

Very easy when G(X) = X9 — X.

34/35



