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Reed-Solomon codes
I Fix S = {x1, x2, . . . , xn} ∈ Fq.

Evaluation map:

evS : Fq[X ] → Fn
q

f (X ) 7→ (f (x1), . . . , f (xn))

I Given k , the k-dimensional Reed-Solomon code RS(S , k) is

{c = evS(f (X )) | f (X ) ∈ Fq[X ], deg f (X ) < k} .

I We say that f (X ) is at Hamming distance τ from
y = (y1, . . . , yn) if

|{i ∈ [1 . . . n]| f (xi ) 6== yi}| ≤ τ.

or equivalently: f (X ) is µ-close to y , with µ+ τ = n

|{i ∈ [1 . . . n]| f (xi ) = yi}| ≥ µ.

(µ matching positions)
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Decoding of Reed-Solomon codes

(List-decoding) problem: of RS(S , k)

Given k and τ , and µ = n − τ . For y ∈ Fn
q, find

Fτ (y) = {f (X ) ∈ Fq[X ]; deg f (X ) < k ; d(evS f (X ), y) ≤ τ} .

When n − τ = µ < k, there are exponentially many solutions:
n − k is the covering radius.

Prop. (Unique decoding) Let µ ≥ k+n
2 . Then, for any y ∈ Fn

q,

|Fτ (y)| ≤ 1.

Prop. (List decoding, “Johnson bound”) Let µ >
√

n(k − 1) be
given. Then, for any y ∈ Fn

q,

|Fτ (y)| ≤ is ”small”,

I.e. constant or O(n2), when k/n is constant and n growing.
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Hardness of maximum-likelihood decoding

The maximum-likelihood (ML) decisional problem is:

Given a code C ⊂ Fn
q, given y, given τ , does there exist

c ∈ C such that d(c , y) ≤ τ .

I NP-complete for general linear codes (Berlekamp et al.
1978).

I Also for Reed-Solomon codes (Guruswami-Vardy 2005).

I An amusing consequence is that “deciding deep-holes” is
hard.

(Deep-holes are to Reed-Solomon codes what bent
functions are to first order Reed-Muller codes:
words as far as possible from the code)

The polynomial reconstruction problem was previously recognized
hard (Goldreich-Rubinfeld-Sudan 1995-2000).
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Coding theory basic questions

All these hardness results do not concern real-life codes:

I What about the size of the field ?
Guruswami-Vardy: alphabet size exponential in n.

I What about the “support set” S ? We would like S = F∗q
(cylic codes)

Guruswami-Vardy: only a tiny subset of F∗q is used.

I What about the rate k/n ?

Arbitrary

No proofs for cyclic Reed-Solomon codes.
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Unsolved related questions

One would like to know for which radius the problem is hard.

I Provide a radius τ = τ(n, k, q) such that decoding RS codes
up to radius τ is hard.

I Guruswami-Sudan polynomial-time for τ ≤ n −
√

(k − 1)n.
No proof that it is the hardness threshold.

Guruswami-Rudra 2006. Some hints that it is.

I Find τ , and onstruct a word y in Fn
q τ -far from the RS code

such that there is many codewords in the ball of radius τ
centered in y .

Justesen-Høholdt 2001,
BenSasson-Koparty-Radhakrishnan 2006.

Only partial results, for some classes for codes.
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Reed-Solomon codes as crypto-objects ?

“Come on, F28 is so small”.

I Actually, dealing with RSq(n, k) may be a big deal.

I qk can be cryptographically large.

The standard RS256(255, k) code has size 28k .

I When the realm of computer-algebra style algorithms is left
i.e. τ > n −

√
(k − 1)n, no efficient decoding.

I Difficult to trapdoor. Even Generalised Reed-Solomon codes.

Sidelnikov-Chestakov 1992.

Some efforts : A.-Finiasz 2003, Kiayias-Yung 2000-
Many uses for other primitives: secret-sharing, proof of
retrievability, etc.
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Cheng-Wan line of work

I Connection between the decoding problem Reed-Solomon
codes over Fq, and the DLP in Fh

q.

I More standard codes.

I Weaker hardness result.
Complexity for discrete logarithm over finite fields, with
x = Q =

∣∣Fqh
∣∣

Lx [α, c] = exp(c(log x)α(log log x)1−α).

So-called “sub-exponential”{
polynomial α = 0

exponential α = 1

Standard α = 1/2, better is α = 1/3.
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Results

I 2004: Reduction in randomized polynomial time (in q) of
DLP in Fqh to the ML-decoding of a standard RS code
[q, k , ]q.

In particular k ≤ √q − h. Vanishing rates.

I 2010: No algorithm polynomial (in q) for the DLP over Fq2h ,
with h ≤ q0.4.

⇓
No polynomial time ML-decoding for the standard RS code
[q, k(q)], where

√
q ≤ k(q) ≤ q −√q.

Any rate k/q ∈ (0, 1).
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From a “factoring” problem to a decoding problem
I Consider Fqh a field extension,
I Q(X ) ∈ Fq[X ] is monic irreducible, with deg Q(X ) = h,
I Fqh = Fq[X ]/Q(X ) = Fq[X ].
I Let S ⊂ Fq have size n ≤ q.

Proposition

There exists A ⊂ S , |A| = µ > h, such that

f (X ) ≡
∏
a∈A

(X − a) mod Q(X )

if and only if the word

y = evS

(
−f (X )/Q(X )− X k

)
is exactly at distance τ = n − µ from the Reed-Solomon code
RS(S , k) of dimension k = µ− h.
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Proof
I Suppose that there exists A ⊂ S , |A| = µ, such that∏

a∈A
(X − a) ≡ f (X ) mod Q(X ).

I There exists t(X ) ∈ F [X ], deg t(X ) = µ− h = k , such that∏
a∈A

(X − a) = f (X ) + t(X )Q(X ).

I Writing t(X ) = X k + r(X ), with deg r(X ) < k :∏
a∈A

(X − a) = f (X ) + (X k + r(X ))Q(X ),

r(X ) = − f (X )

Q(X )
− X k +

∏
a∈A(X − a)

Q(X )
,

thus r(a) = −f (a)/Q(a)− ak , for a ∈ A.
I Since |S | = µ, y = evS

(
−f (X )/Q(X )− X k

)
is at distance

n − µ from evS(r(X )) ∈ RS(S , k).
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Where is the discrete logarithm problem ?

Suppose that X is the basis for the logarithms.

I When f (X ) ≡ X u mod Q(X ), an equation∏
a∈A

(X − a) = f (X ) ≡ X u mod Q(X ) (1)

with A ⊂ S , is called a relation.

I Then (1) gives a relation between the logs:∑
a∈A

log(X − a) = u mod (qh − 1).

I Collecting n = |S | such relations gives a linear system,
among whose solutions are the log(X − a).
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Still ! Where is the discrete logarithm problem ?

I When all the log(X − a), for a ∈ S are known, then finding
the logarithm of a particular f (X ) can be done by considering

X
u
f (X )

for a random u and trying to find a decomposition∏
a∈A

(X − a) ≡ f (X )X u mod Q(X ) (2)

which gives

log(f (X )) =
∑
a∈A

log(X − a)− u

I Repeat with random u’s until a decomposition (2) if found.
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Reed-Solomon based index calculus: First phase
Auxiliary S ⊂ Fq, |S | = n.

1. (Randomize) Compute f (X )← X u mod Q(X ) for a random
u ∈ Z/(qh − 1)Z.

2. (Decompose-Decode) Find a subset A ⊂ S , |A| = µ, such
that

f (X ) ≡
∏
a∈A

(X − a) mod Q(X ).

3. If it exists, add the line

u ≡
∑
a∈A

log(X − a) mod (qh − 1).

to a linear system with unknowns the log(X − a).

4. If we have less than n relations, goto 1.

5. (Linear algebra) solve the n × n linear system over
Z/(qh − 1)Z, which yields the log c(X ), c(X ) ∈ S .

If not full rank, goto to 1 to get new relations.
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Reed-Solomon based index calculus: Second phase

Second phase (online): “target” is ζ = z(X ),

1. (Decompose-decode) find u and A ⊂ S such that

z(X )X u ≡
∏
c∈A

log(X − a) mod Q(X )

2. Then log z(X ) ≡ −u +
∑

c∈A log c(X ) mod (qh − 1).
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Typical complexity analysis

I 1st phase takes

O(n · (1/π) · nδ) + O(nν),

π = probability of successful decomposition
nδ = cost of testing/finding a decomposition
nν = linear algebra

I 2nd phase takes O((1/π) · nδ).

I Goal: find parameters to minimize the total time.
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Example: Adleman (1/2)

I Consider S = {P(X ) ∈ Fq[X ], irreducible of degree ≤ e},

n = |S | ≈ qe+1

e

I We have to consider the probability π that a random
polynomial of degree ≤ D has all its factors in S :

π =
Nq(D, e)

qD

where Nq(D, e) is

|{P ∈ Fq[X ], deg(P) ≤ D, all factors of P have degree ≤ e}| .

I Thm. π ≈ (D/e)−(1+o(1))D/e (if D and e grow together).
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Adleman (2/2)
I Let δ and ν be the exponents for factorization and linear

algebra. The cost is:

O(n · nδ/π) + O(nν).

I Balance the costs:

(ν − (δ + 1)) log n = − log π.

I Using

log Be ≈ e log q, log π ≈ −(D/e) log(D/e)

leads to

(ν − (δ + 1))e log q =
D

e
log

D

e
.

I Some workout gives e = cDα(log D)β, with α = β = 1/2.
I Complexity then is

exp(c
√

h log q log(h log q)) = Lqh [1/2, c]
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Cheng/Wan in a direct way

1. Use known decoding algorithms of Reed-Solomon codes pour
the general framework;

2. We do not pretend at providing a ML-decoding of
Reed-Solomon codes;

3. Approaching it for k/n→ 1 ?

Galand-Fontaine 2009 (for steganography).

Use a device for beaking discrete logarithms over F2h :

I Xilinx ISE Software. Reed-Solomon Decoder v8.0.

1 input symbol /clock cycle for F256.

I Aha G709D-40 40 Gbits/sec [255, 239, ] Reed-Solomon
Decoder Core

≈ 2× 107 decodings/sec.
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Algorithms for unique decoding
We have a “computer algebra view” of Reed-Solomon codes.

I “Berlekamp-Welch”: O(n3);
I Key equation: O(n2). Berlekamp-Massey, or EEA (Sugiyama

et al.);
I Gao, EEA.

We have chosen Gao’s algorithm, which appears to us the easiest
to connect to “fast algorithms” from computer algebra.

e.g. von zur Gathen and Gerhard’s Computer algebra.

Our aim: find the error-locator polynomial

τ(X ) =
∏

yi 6=f (ai )

(X − ai )

or, equivalently,

µ(X ) =
∏

yi=f (ai )

(X − ai ).

We do not care about the “message polynomial”.
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Gao1a: basic version

Input : (xi ) ∈ Fn
q, (yi ) ∈ Fn

q, k , and thus d = n − k + 1.

Precomp. Compute G (X ) =
∏n

i=1(X − xi ).

Output the error locator polynomial τ(x) or failure.

1. (Interpolation) Compute I (X ) such that I (xi ) = yi for all i .

2. (Partial gcd) Perform PartialEEA with inputs
s0 = G ÷ X k (of degree d − 1),
s1 = I ÷ X k (of degree ≤ d − 2)
Stop when

g(X ) = u(X )s0(X ) + v(X )s1(X )

has deg(g) < (d − 1)/2.

3. (Division) Compute r(X ) = G (X ) rem v(X )

4. If r(X ) = 0, return τ(X ) = v(X ), else return failure.
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Complexity analysis of Gao1a

Total time is

TG + TG÷X k + TI÷X k + TPEEA + Tv |G?,

Rem. Faster version Gao1a useful when d � n, which is our case;
also faster when almost all decoding attempts have to fail!

We need an algorithm which fails fast.
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Numerical example I

I Consider F133 = F13[X ]/(X 3 + 2X + 11). The support is
S = {0, 1, . . . , 12}.

I We use F13, and (n, k , d) = (13, 7, 10), which gives µ = 7.

I Consider for instance X 15. We have to decode the word:

y = evS(−X 15/Q(X )− X 7) = (7, 1, 1, 0, 1, 3, 6, 8, 9, 12, 4, 11, 10).

I The PartialEEA procedure yields

u(X ) = X 2 + 5X + 3, v(X ) = 5X 3 + 2X 2 + 3, g(X ) = 7X + 6,

And the polynomial v factors as (X − 3)(X − 8)(X − 12), so
that

X 15(X − 3)(X − 8)(X − 12) ≡ G (X ) mod (Q(X ), 13).
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Numerical example II
Write 133 − 1 = 22 · 32 · 61 (Pohlig-Hellman).
Logarithms modulo 22 and 32 are easy to compute.
The matrix M modulo 61 is

M =



15 0 0 1 0 0 0 0 1 0 0 0 1 1
19 0 1 0 0 0 1 0 0 0 0 1 0 1
33 1 0 0 1 0 0 1 0 0 0 0 0 1
40 0 0 1 0 0 0 0 1 0 1 0 0 1
48 0 0 0 1 0 0 0 1 0 0 0 0 1
51 1 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 0 1 1
8 0 0 0 0 1 0 0 1 1 0 0 0 1
15 1 0 0 0 0 0 0 0 1 1 0 0 1
25 0 0 0 0 0 0 1 0 1 1 0 0 1
31 0 0 1 1 0 0 0 0 0 0 1 0 1
36 0 0 0 0 1 1 0 0 0 0 0 0 1
48 1 0 0 0 0 0 1 1 0 0 0 0 1
14 0 1 1 1 0 0 0 0 0 0 0 0 1
16 0 0 1 0 0 0 0 0 0 1 0 1 1
17 1 0 0 1 1 0 0 0 0 0 0 0 1
22 0 0 0 1 0 1 0 0 1 0 0 0 1
24 0 0 0 1 0 0 0 0 0 0 0 1 1
27 0 0 0 1 1 0 1 0 0 0 0 0 1


A solution is V = (1 3 52 24 57 9 41 54 42 27 41 35 5 36)T mod 61.
LDPC codes ? Designs ?
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Numerical example III

Computing the logarithm of X 2 + 1 is done using the relation

(X 2 + 1)X ≡ G (X )/((X (X − 2)(X − 8))) mod Q(X ).

and therefore

log(X 2 + 1) = 417,

using the Chinese remaindering theorem.
(Note that this is a toy example, the logarithm of X 2 + 1 could
have been computed in different ways, factoring it over the factor
base directly for instance.)
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Almost all decoding attempts have to fail ?

Proposition

There exists A ⊂ S , |A| = µ, such that

f (X ) ≡
∏
a∈A

(X − a) mod Q(X )

if and only if the word

y = evS

(
−f (X )/Q(X )− X k

)
is exactly at distance n − µ from the Reed-Solomon code RSS(k)
of dimension k = µ− h and support S .

We have a [n, k , n − k + 1] Reed-Solomon code, and we
want to decode it up to radius n − k − h.

Problem: find S , n = |S |, µ.
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Density
I Case n − k even. Unique Decoding gives t = n−k

2 , µ = n+k
2 .

I We also have k = µ− h. This gives

k = n − 2h, τ = h.

I High rate or small rate ?

I Formula for the density

Vq(n, n−k2 )× qk

qn
,

which is not exponentially small for k ≈ n.
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Oddities

I We look for relations, for f (X ) and with |A| = µ > h:

f (X ) ≡
∏
a∈A

(X − a) mod Q(X ) (3)

It is the RHS
∏

a∈A(X − a) which is reduced modQ(X ).

I Unique decoding implies no collisions between the∏
a∈A

(X − a) mod Q(X )

I Thus we get a probability of(n
µ

)
qh

=

(n
τ

)
qh

=

(n
h

)
qh
.
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Analysis

I Recall that the cost is:

O

(
n

1

$
(M(n) + M(h) log h) + nhM(h) log q

)
+O(h·n2M(h)).

with

π =

(n
h

)
Q
.

I For h constant and n going to infinity: π ≈ nτ

h! · Q
.

I If n > log q and n > h, the cost simplifies to

O
(

h!(q/n)hnM(n)
)

+ O(h · n2M(h)),

and the first term always dominates.

I Picking n = q, we get

O(h! · qM(q)).
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Sub-exp behaviour ?

I Case h� q, and growing very slowing, with Q = qh.

I The cost being Õ(h! · q2), we look for 0 ≤ α < 1 such that

2 log q + h log h ' c(logQ)α(log logQ)1−α,

I Making also the hypothesis that h� log q implies

2
logQ

h
' c(logQ)α(log logQ)1−α,

h =

(
2 logQ

c log logQ

)1−α

'
(

2 log q

c log log q

)1/α−1
.

I To respect the hypothesis h� log q, we must have α ≥ 1/2.

Not my cup of tea. . .

31/35



Conclusion?
Things we do:

I Incremental version: X u → X u+1 enables to perform
incremental decoding, many other tricks.

I Galois actions using extension fields: one can then use
n > q: this corresponds to codes over extension fields.

Things we may do:
I Use multiplicities to get relations

∏
(X−a)ea , with ea ∈ {1, 2}.

Derivative codes (Guruswami-Wang, Beelen),
better probabilities, Berlekamp-Welch easy, Gao
not so clear (to me).

I Use list decoding at the opposite end of the spectrum
k/n ≈ 0.

Things we dream of:
I Link CRT codes to the case of Fp.
I Elliptic curves. Connection between EC-DLP and decoding

of AG codes, for g = 1. (Cheng-Wan again).
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Theorem–Cheng 2008

For any constant c > 0, if there is an algorithm which in expected
time 2cn(log q)O(1) computes the minimum distance of any linear
[n, k , ]q code, then the ECDLP over Fq can be solved in
expected time qc .

Recall that the generic attack has c = 1/2.

33/35



Incremental computations

Prop. For u an integer, put
f (X ) = X u ≡ ch−1X h−1 + · · ·+ c0 mod Q(X ) and
f1 = X u+1 mod Q(X ). Then

f1(ai )

Q(ai )
= ai

f (ai )

Q(ai )
− ch−1.

Interpolation: I (ai ) = bi → I ′(ai ) = b′i with

I ′(X ) = XI (X ) + X k+1 − X k + ch−1 mod G (X ).

Very easy when G (X ) = X q − X .
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