List Decoding of Algebraic Codes

Peter Beelen, Kristian Brander and Johan S.R. Nielsen

DTU Mathematics
Technical University of Denmark

Contents

(1) List decoding of error-correcting codes
(2) Fast list decoding of Reed-Solomon codes
(3) Fast list decoding of certain AG codes

4 Wu decoding of Reed-Solomon codes

Contents

(1) List decoding of error-correcting codes

(2) Fast list decoding of Reed-Solomon codes

3 Fast list decoding of certain AG codes

4 Wu decoding of Reed-Solomon codes

Codewords and unique decoding

- Codewords: Vectors $\mathbf{c} \in \Sigma^{n}$. Code: $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$.

Codewords and unique decoding

- Codewords: Vectors $\mathbf{c} \in \Sigma^{n}$. Code: $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$.
- Minimum distance, d, is the minimal number of disagreeing positions between any two codewords.

Codewords and unique decoding

- Codewords: Vectors $\mathbf{c} \in \Sigma^{n}$. Code: $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$.
- Minimum distance, d, is the minimal number of disagreeing positions between any two codewords.
- If the number of errors, τ, is less than $\frac{d}{2}$ then there is at most one codeword within distance τ from any received word \mathbf{y}.

List decoding

- If $\tau \geq \frac{d}{2}$ there might be a "small" list of codewords within distance τ from \mathbf{y}.
- The decoder thus get a list of candidate messages.

List decoding

- If $\tau \geq \frac{d}{2}$ there might be a "small" list of codewords within distance τ from \mathbf{y}.
- The decoder thus get a list of candidate messages.
- We require the lists to be polynomially bounded in the code length n.

Error-correcting codes and list decoding

- The rate of an error-correcting code is rate $R=\frac{\log _{|\Sigma|} \mid(\mathcal{C} \mid)}{n}$.

Error-correcting codes and list decoding

- The rate of an error-correcting code is rate $R=\frac{\log _{|\Sigma|}(|\mathcal{C}|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

Error-correcting codes and list decoding

- The rate of an error-correcting code is rate $R=\frac{\log _{|\Sigma|}(|\mathcal{C}|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

Error-correcting codes and list decoding

- The rate of an error-correcting code is rate $R=\frac{\log _{|\Sigma|} \mid(\mathcal{C} \mid)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

- Unique decoding: $\tau / n<\frac{1}{2}(1-R)$.

Error-correcting codes and list decoding

- The rate of an error-correcting code is rate $R=\frac{\log _{|\Sigma|}(|\mathcal{C}|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

- Unique decoding:

$$
\tau / n<\frac{1}{2}(1-R)
$$

- Guruswami-Sudan algorithm:

$$
\tau / n<1-\sqrt{R}
$$

- Furthermore: The code must be efficiently list decodable.

Contents

(1) List decoding of error-correcting codes
(2) Fast list decoding of Reed-Solomon codes

3 Fast list decoding of certain AG codes

4 Wu decoding of Reed-Solomon codes

Reed-Solomon codes

- A Reed-Solomon code of length n and rate $R=k / n$:

$$
\mathcal{C}=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f)<k\right\},
$$

Alphabet is $\Sigma=\mathbb{F}_{q}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ are distinct.

Reed-Solomon codes

- A Reed-Solomon code of length n and rate $R=k / n$:

$$
\mathcal{C}=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f)<k\right\},
$$

Alphabet is $\Sigma=\mathbb{F}_{q}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ are distinct.

Reed-Solomon codes

- A Reed-Solomon code of length n and rate $R=k / n$:

$$
\mathcal{C}=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f)<k\right\},
$$

Alphabet is $\Sigma=\mathbb{F}_{q}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ are distinct.

List decoding Reed-Solomon codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}[x]$, with $\operatorname{deg}(f)<k$, that passes through $n-\tau$ of the received points.

List decoding Reed-Solomon codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}[x]$, with $\operatorname{deg}(f)<k$, that passes through $n-\tau$ of the received points.

- Interpolate $Q(x, y)$ through received points, with multiplicity s.

List decoding Reed-Solomon codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}[x]$, with $\operatorname{deg}(f)<k$, that passes through $n-\tau$ of the received points.

- Interpolate $Q(x, y)$ through received points, with multiplicity s.
- ... of least weighted degree.

$$
\operatorname{deg}_{w}\left(x^{i} y^{j}\right)=i+(k-1) j
$$

List decoding Reed-Solomon codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}[x]$, with $\operatorname{deg}(f)<k$, that passes through $n-\tau$ of the received points.

- Interpolate $Q(x, y)$ through received points, with multiplicity s.
- ... of least weighted degree.

$$
\operatorname{deg}_{w}\left(x^{i} y^{j}\right)=i+(k-1) j
$$

- If $\tau / n<1-\sqrt{R}$ then

$$
Q(x, f(x))=0
$$

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_{q}[x]$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\begin{aligned}
& \left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}, \\
& \text { where } E(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \text { and } R\left(\alpha_{i}\right)=y_{i} \text { for } 1 \leq i \leq n
\end{aligned}
$$

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_{q}[x]$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}
$$

where $E(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $R\left(\alpha_{i}\right)=y_{i}$ for $1 \leq i \leq n$.

- Introduce matrix $\ell+1 \times \ell+1$ matrix \mathbf{A},
$[\mathbf{A}]_{i j}=$ Coefficient to y^{i} in j-th basis function

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_{q}[x]$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by
$\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}$,
where $E(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $R\left(\alpha_{i}\right)=y_{i}$ for $1 \leq i \leq n$.
- Introduce matrix $\ell+1 \times \ell+1$ matrix \mathbf{A},

$$
[\mathbf{A}]_{i j}=\text { Coefficient to } y^{i} \text { in } j \text {-th basis function }
$$

- Then,

$$
Q(x, y)=\sum_{i=0}^{\ell} q_{i}(x) y^{i} \in \mathbb{F}_{q}[x, y]
$$

is an interpolation polynomial if and only if $\mathbf{q}=\left(q_{0}, \ldots, q_{\ell}\right)$ is in the $\mathbb{F}_{q}[x]$-column span of \mathbf{A}.

Interpolation

- For $s=2$ and $\ell=3$,

$$
\mathbf{A}=\left[\begin{array}{cccc}
E^{2} & -E R & R^{2} & -R^{3} \\
0 & E & -2 R & 3 R^{2} \\
0 & 0 & 1 & -3 R \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Interpolation

- For $s=2$ and $\ell=3$,

$$
\mathbf{A}=\left[\begin{array}{cccc}
E^{2} & -E R & R^{2} & -R^{3} \\
0 & E & -2 R & 3 R^{2} \\
0 & 0 & 1 & -3 R \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The column span of \mathbf{A} gives all interpolation polynomials. We look for short vectors, with respect to weighted degree.
- Gaussian elimination-style algorithm: Cancel highest terms.

Algorithm: Gaussian elimination

- Represent matrix as grid.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j
\end{aligned}
$$

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.
- Continue the process, until leading coordinates occur in distinct rows.

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (i, j)-th entry by stack of cubes:

$$
\begin{aligned}
& \operatorname{deg}_{w}\left(\mathbf{A}_{i, j}\right)= \\
& \operatorname{deg}\left(\mathbf{A}_{i, j}\right)+(k-1) j .
\end{aligned}
$$

- Gaussian elimination.
- Continue the process, until leading coordinates occur in distinct rows.
- Leads to algorithm requiring $\mathcal{O}\left(\ell^{5} n^{2}\right) \mathbb{F}_{q}$-multiplications.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix $\mathbf{U}(\mathbf{A}, t)$ representing the column operations made when "cutting down" the stack, i.e.
- $\operatorname{deg}_{w}(\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t)) \leq \operatorname{deg}_{w}(\mathbf{A})-t$ or
- A $\cdot \mathbf{U}(\mathbf{A}, t)$ has all leading coordinates in distinct rows, where $\operatorname{deg}_{w}(\mathbf{A})=\sum_{i} \operatorname{deg}_{w}\left(\mathbf{A}_{i}\right)$.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix $\mathbf{U}(\mathbf{A}, t)$ representing the column operations made when "cutting down" the stack, i.e.
- $\operatorname{deg}_{w}(\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t)) \leq \operatorname{deg}_{w}(\mathbf{A})-t$ or
- A $\cdot \mathbf{U}(\mathbf{A}, t)$ has all leading coordinates in distinct rows, where $\operatorname{deg}_{w}(\mathbf{A})=\sum_{i} \operatorname{deg}_{w}\left(\mathbf{A}_{i}\right)$.
- Observation:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}(\mathbf{A},\lceil t / 2\rceil) \cdot \mathbf{U}\left(\mathbf{A}^{\prime}, t-d\right)
$$

where $\mathbf{A}^{\prime}=\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t / 2)$ and $d=\operatorname{deg}_{w} \mathbf{A}-\operatorname{deg}_{w} \mathbf{A}^{\prime}$.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix $\mathbf{U}(\mathbf{A}, t)$ representing the column operations made when "cutting down" the stack, i.e.
- $\operatorname{deg}_{w}(\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t)) \leq \operatorname{deg}_{w}(\mathbf{A})-t$ or
- A $\cdot \mathbf{U}(\mathbf{A}, t)$ has all leading coordinates in distinct rows, where $\operatorname{deg}_{w}(\mathbf{A})=\sum_{i} \operatorname{deg}_{w}\left(\mathbf{A}_{i}\right)$.
- Observation:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}(\mathbf{A},\lceil t / 2\rceil) \cdot \mathbf{U}\left(\mathbf{A}^{\prime}, t-d\right)
$$

where $\mathbf{A}^{\prime}=\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t / 2)$ and $d=\operatorname{deg}_{w} \mathbf{A}-\operatorname{deg}_{w} \mathbf{A}^{\prime}$.

- Leads to divide and conquer algorithm. Handle base case $\mathbf{U}(\mathbf{A}, 1)$ by Gaussian elimination.

Algorithm: Divide and conquer

- Subproblems are easy:
$\mathbf{U}(\mathbf{A}, t)=\mathbf{U}\left(\pi_{t}(\mathbf{A}), t\right)$.

Algorithm: Divide and conquer

- Subproblems are easy:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}\left(\pi_{t}(\mathbf{A}), t\right)
$$

Algorithm: Divide and conquer

$\pi_{t}(\mathbf{A})$

- Subproblems are easy:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}\left(\pi_{t}(\mathbf{A}), t\right)
$$

Algorithm: Divide and conquer

$\pi_{t}(\mathbf{A})$

- Subproblems are easy:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}\left(\pi_{t}(\mathbf{A}), t\right)
$$

- Combining subproblems is easy:

Entries in $\mathbf{U}(\mathbf{A}, t)$ have at most $2 t$ coefficients.

Algorithm: Divide and conquer

$\pi_{t}(\mathbf{A})$

- Subproblems are easy:

$$
\mathbf{U}(\mathbf{A}, t)=\mathbf{U}\left(\pi_{t}(\mathbf{A}), t\right)
$$

- Combining subproblems is easy:
Entries in $\mathbf{U}(\mathbf{A}, t)$ have at most $2 t$ coefficients.
- Leads to algorithm requiring
$\mathcal{O}\left(\ell^{5} n \log ^{2}(\ell n) \log \log (\ell n)\right)$
\mathbb{F}_{q}-multiplications.

Comparison and conclusions

- The divide and conquer algorithm is asymptotically faster than Gaussian elimination.

Gaussian elimination
$\mathcal{O}\left(\ell^{5} n^{2}\right)$
Divide and conquer
$\mathcal{O}\left(\ell^{5} n \log ^{2}(\ell n) \log \log (\ell n)\right)$

Comparison and conclusions

- The divide and conquer algorithm is asymptotically faster than Gaussian elimination.

Gaussian elimination
$\mathcal{O}\left(\ell^{5} n^{2}\right)$
Divide and conquer
$\mathcal{O}\left(\ell^{5} n \log ^{2}(\ell n) \log \log (\ell n)\right)$

Comparison and conclusions

- The divide and conquer algorithm is asymptotically faster than Gaussian elimination.

Gaussian elimination
$\mathcal{O}\left(\ell^{5} n^{2}\right)$
Divide and conquer
$\mathcal{O}\left(\ell^{5} n \log ^{2}(\ell n) \log \log (\ell n)\right)$

- The algorithm works in a more general setting: list decoding of certain algebraic geometry codes.

Contents

(1) List decoding of error-correcting codes
(2) Fast list decoding of Reed-Solomon codes

3 Fast list decoding of certain AG codes

4 Wu decoding of Reed-Solomon codes

AG codes

- \mathfrak{C} a simple $C_{a b}$ curve, i.e. a nonsingular affine curve given by a polynomial of the form $F\left(x_{1}, x_{2}\right)=0$ such that

AG codes

- \mathfrak{C} a simple $C_{a b}$ curve, i.e. a nonsingular affine curve given by a polynomial of the form $F\left(x_{1}, x_{2}\right)=0$ such that
- The numbers $\gamma=\operatorname{deg}_{X_{2}} F$ and $\delta=\operatorname{deg}_{X_{1}} F$ are relatively prime.

AG codes

- \mathfrak{C} a simple $C_{a b}$ curve, i.e. a nonsingular affine curve given by a polynomial of the form $F\left(x_{1}, x_{2}\right)=0$ such that
- The numbers $\gamma=\operatorname{deg}_{X_{2}} F$ and $\delta=\operatorname{deg}_{X_{1}} F$ are relatively prime.
- Any monomial $x_{1}^{i} x_{2}^{j}$ in the support of F satisfies $\gamma i+\delta j \leq \gamma \delta$.

AG codes

- \mathfrak{C} a simple $C_{a b}$ curve, i.e. a nonsingular affine curve given by a polynomial of the form $F\left(x_{1}, x_{2}\right)=0$ such that
- The numbers $\gamma=\operatorname{deg}_{X_{2}} F$ and $\delta=\operatorname{deg}_{X_{1}} F$ are relatively prime.
- Any monomial $x_{1}^{i} x_{2}^{j}$ in the support of F satisfies $\gamma i+\delta j \leq \gamma \delta$.
- A simple $C_{a b}$-curve has a unique point at infinity denoted by P_{∞}.
- $v_{P_{\infty}}\left(x_{1}^{i} x_{2}^{j}\right)=-i \gamma-j \delta$.

AG codes

- \mathfrak{C} a simple $C_{a b}$ curve, i.e. a nonsingular affine curve given by a polynomial of the form $F\left(x_{1}, x_{2}\right)=0$ such that
- The numbers $\gamma=\operatorname{deg}_{X_{2}} F$ and $\delta=\operatorname{deg}_{X_{1}} F$ are relatively prime.
- Any monomial $x_{1}^{i} x_{2}^{j}$ in the support of F satisfies $\gamma i+\delta j \leq \gamma \delta$.
- A simple $C_{a b}$-curve has a unique point at infinity denoted by P_{∞}.
- $v_{P_{\infty}}\left(x_{1}^{i} x_{2}^{j}\right)=-i \gamma-j \delta$.
- An AG code from a simple $C_{a b}$-curve of length n :
$\mathcal{C}=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f(x) \in L\left(\mu P_{\infty}\right), v_{P_{\infty}}(f)+\mu \geq 0\right\}$,
Alphabet is $\Sigma=\mathbb{F}_{q}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{C}\left(\mathbb{F}_{q}\right)$ are distinct affine points.

List decoding AG codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$, with $v_{P_{\infty}}(f)+\mu \geq 0$, that passes through $n-\tau$ of the received points.

List decoding AG codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$, with $v_{P_{\infty}}(f)+\mu \geq 0$, that passes through $n-\tau$ of the received points.
- Interpolate $Q\left(x_{1}, x_{2}, y\right)$ through received points, with multiplicity s.

List decoding AG codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$, with $v_{P_{\infty}}(f)+\mu \geq 0$, that passes through $n-\tau$ of the received points.
- Interpolate $Q\left(x_{1}, x_{2}, y\right)$ through received points, with multiplicity s.
- ... of least weighted degree.

$$
\operatorname{deg}_{w}\left(x_{1}^{i_{1}} x_{2}^{i_{2}} y^{j}\right)=i_{1} \gamma+i_{2} \delta+(k-1) j
$$

List decoding AG codes

- A list decoder must find $f(x) \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$, with $v_{P_{\infty}}(f)+\mu \geq 0$, that passes through $n-\tau$ of the received points.
- Interpolate $Q\left(x_{1}, x_{2}, y\right)$ through received points, with multiplicity s.
- ... of least weighted degree.

$$
\operatorname{deg}_{w}\left(x_{1}^{i_{1}} x_{2}^{i_{2}} y^{j}\right)=i_{1} \gamma+i_{2} \delta+(k-1) j
$$

- If $\tau / n<1-\sqrt{R}$ then

$$
Q\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)=0
$$

Translation of the interpolation problem

- The $\mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}
$$

Translation of the interpolation problem

- The $\mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}
$$

- E satisfies

$$
(E)=\sum_{i=1}^{n} \alpha_{i}-n P_{\infty}
$$

$$
\text { and } R\left(\alpha_{i}\right)=y_{i} \text { for } 1 \leq i \leq n .
$$

Translation of the interpolation problem

- The $\mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}
$$

- E satisfies

$$
(E)=\sum_{i=1}^{n} \alpha_{i}-n P_{\infty}
$$

and $R\left(\alpha_{i}\right)=y_{i}$ for $1 \leq i \leq n$.

- Find a generating set of the module viewed as $\mathbb{F}_{q}\left[x_{1}\right]$ module. One finds a generating set of cardinality $\gamma(\ell+1)$.

Translation of the interpolation problem

- The $\mathbb{F}_{q}\left[x_{1}, x_{2}\right] /\left(F\left(x_{1}, x_{2}\right)\right)$-module of interpolation polynomials with $\operatorname{deg}_{y}(Q) \leq \ell$, is spanned by

$$
\left\{E^{s}, E^{s-1}(y-R), \ldots,(y-R)^{s},(y-R)^{s+1}, \ldots,(y-R)^{\ell}\right\}
$$

- E satisfies

$$
(E)=\sum_{i=1}^{n} \alpha_{i}-n P_{\infty}
$$

and $R\left(\alpha_{i}\right)=y_{i}$ for $1 \leq i \leq n$.

- Find a generating set of the module viewed as $\mathbb{F}_{q}\left[x_{1}\right]$ module. One finds a generating set of cardinality $\gamma(\ell+1)$.
- Introduce matrix $\gamma(\ell+1) \times \gamma(\ell+1)$ matrix \mathbf{A},
$[\mathbf{A}]_{(i j),\left(i^{\prime} j^{\prime}\right)}=$ Coefficient to $x_{2}^{i} y^{j}$ in $\left(i^{\prime}, j^{\prime}\right)$-th basis function

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.
- Leads to algorithm requiring

$$
\mathcal{O}\left(\ell^{5} \gamma^{3}(n+\gamma \delta) \log ^{2}(\ell(n+\gamma \delta)) \log \log (\ell(n+\gamma \delta))\right)
$$

\mathbb{F}_{q}-multiplications.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.
- Leads to algorithm requiring

$$
\mathcal{O}\left(\ell^{5} \gamma^{3}(n+\gamma \delta) \log ^{2}(\ell(n+\gamma \delta)) \log \log (\ell(n+\gamma \delta))\right)
$$

\mathbb{F}_{q}-multiplications.

- For the well-known Hermitian curve one can list-decode one-point AG codes in

$$
\mathcal{O}\left(\ell^{5} n^{2} \log ^{2}(\ell n) \log \log (\ell n)\right)
$$

$\mathbb{F}_{q^{2}}$-multiplications. Note that in this case $\gamma=q, \delta=q+1$ and $n=q^{3}$.

Contents

(1) List decoding of error-correcting codes
(2) Fast list decoding of Reed-Solomon codes

3 Fast list decoding of certain AG codes

4 Wu decoding of Reed-Solomon codes

The key equation for RS codes.

- Sudan's algorithm for $\ell=1$: find

$$
Q(x, y)=q_{1}(x) y+q_{0}(x)
$$

such that $Q\left(\alpha_{i}, y_{i}\right)=0$.

The key equation for RS codes.

- Sudan's algorithm for $\ell=1$: find

$$
Q(x, y)=q_{1}(x) y+q_{0}(x)
$$

such that $Q\left(\alpha_{i}, y_{i}\right)=0$.

- Leads to a (Gao) key equation

$$
q_{1}(x) R(x) \equiv-q_{0}(x) \bmod E(x)
$$

The key equation for RS codes.

- Sudan's algorithm for $\ell=1$: find

$$
Q(x, y)=q_{1}(x) y+q_{0}(x)
$$

such that $Q\left(\alpha_{i}, y_{i}\right)=0$.

- Leads to a (Gao) key equation

$$
q_{1}(x) R(x) \equiv-q_{0}(x) \quad \bmod E(x)
$$

- Which implies the standard key equation

$$
\Lambda(X) S(X) \equiv \Omega(x) \quad \bmod x^{n-k}
$$

The key equation for RS codes.

- Sudan's algorithm for $\ell=1$: find

$$
Q(x, y)=q_{1}(x) y+q_{0}(x)
$$

such that $Q\left(\alpha_{i}, y_{i}\right)=0$.

- Leads to a (Gao) key equation

$$
q_{1}(x) R(x) \equiv-q_{0}(x) \quad \bmod E(x)
$$

- Which implies the standard key equation

$$
\Lambda(X) S(X) \equiv \Omega(x) \quad \bmod x^{n-k}
$$

- Solving the key equation: use EEA on $S(x)$ and x^{n-k}. Finds $\Lambda(x)$ and $\Omega(x)$ if $2 \tau<n-k+1$.

The Wu list decoder.

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2 \tau \geq n-k+1$.

The Wu list decoder.

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2 \tau \geq n-k+1$.
- Idea: working in the $\mathbb{F}_{q}[x]$-module generated by $y-S(x)$ and x^{n-k} we have

$$
\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y) .
$$

The Wu list decoder.

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2 \tau \geq n-k+1$.
- Idea: working in the $\mathbb{F}_{q}[x]$-module generated by $y-S(x)$ and x^{n-k} we have

$$
\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)
$$

- $h_{1}(x, y)$ and $h_{2}(x, y)$ are the output of (essentially) EEA on $y-S(x)$ and x^{n-k}.

The Wu list decoder.

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2 \tau \geq n-k+1$.
- Idea: working in the $\mathbb{F}_{q}[x]$-module generated by $y-S(x)$ and x^{n-k} we have

$$
\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)
$$

- $h_{1}(x, y)$ and $h_{2}(x, y)$ are the output of (essentially) EEA on $y-S(x)$ and x^{n-k}.
- $f_{1}(x)$ and $f_{2}(x)$ are unknown polynomials, but upper bounds on their degrees are known.

The Wu list decoder.

As before: $\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)$.

The Wu list decoder.

As before: $\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)$.

- For error positions $x=\alpha$ we can determine the ratio between $f_{1}(\alpha)$ and $f_{2}(\alpha)$.

The Wu list decoder.

As before: $\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)$.

- For error positions $x=\alpha$ we can determine the ratio between $f_{1}(\alpha)$ and $f_{2}(\alpha)$.
- $f_{1}(x)$ and $f_{2}(x)$ can be determined solving a rational interpolation problem (if τ is not too big).

The Wu list decoder.

As before: $\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)$.

- For error positions $x=\alpha$ we can determine the ratio between $f_{1}(\alpha)$ and $f_{2}(\alpha)$.
- $f_{1}(x)$ and $f_{2}(x)$ can be determined solving a rational interpolation problem (if τ is not too big).
- Wu's list decoder can correct (generalized) Reed-Solomon codes up to $\tau<n-\sqrt{n(n-d)}$ errors.

The Wu list decoder.

As before: $\Omega(x)-\Lambda(x) y=f_{1}(x) h_{1}(x, y)+f_{2}(x) h_{2}(x, y)$.

- For error positions $x=\alpha$ we can determine the ratio between $f_{1}(\alpha)$ and $f_{2}(\alpha)$.
- $f_{1}(x)$ and $f_{2}(x)$ can be determined solving a rational interpolation problem (if τ is not too big).
- Wu's list decoder can correct (generalized) Reed-Solomon codes up to $\tau<n-\sqrt{n(n-d)}$ errors.
- Work in progress: apply Wu's list decoder to other classes of codes.

Thank you for your attention!

