List Decoding of Algebraic Codes

Peter Beelen, Kristian Brander and Johan S.R. Nielsen

DTU Mathematics Technical University of Denmark

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Contents

1 List decoding of error-correcting codes

2 Fast list decoding of Reed–Solomon codes

- 3 Fast list decoding of certain AG codes
- Wu decoding of Reed–Solomon codes

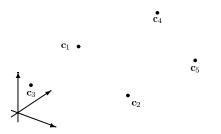
Contents

1 List decoding of error-correcting codes

Past list decoding of Reed–Solomon codes

- 3 Fast list decoding of certain AG codes
- Wu decoding of Reed–Solomon codes

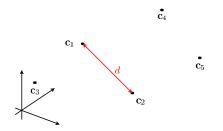
Codewords and unique decoding



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

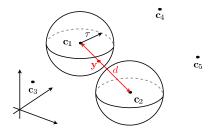
• Codewords: Vectors $\mathbf{c} \in \Sigma^n$. Code: $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_m}$.

Codewords and unique decoding



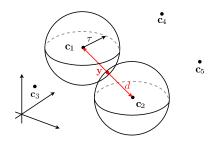
- Codewords: Vectors $\mathbf{c} \in \Sigma^n$. Code: $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_m}$.
- Minimum distance, *d*, is the minimal number of disagreeing positions between any two codewords.

Codewords and unique decoding



- Codewords: Vectors $\mathbf{c} \in \Sigma^n$. Code: $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_m}$.
- Minimum distance, *d*, is the minimal number of disagreeing positions between any two codewords.
- If the number of errors, τ, is less than ^d/₂ then there is at most one codeword within distance τ from any received word y.

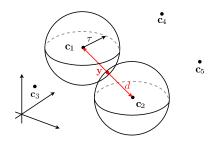
List decoding



• If $\tau \geq \frac{d}{2}$ there might be a "small" list of codewords within distance τ from **y**.

• The decoder thus get a list of candidate messages.

List decoding



- If $\tau \geq \frac{d}{2}$ there might be a "small" list of codewords within distance τ from **y**.
- The decoder thus get a list of candidate messages.
- We require the lists to be polynomially bounded in the code length *n*.

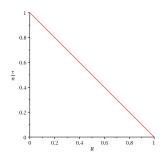
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The rate of an error-correcting code is rate $R = \frac{\log_{|\Sigma|}(|C|)}{n}$.

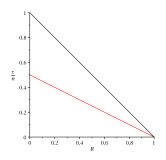
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The rate of an error-correcting code is rate $R = \frac{\log_{|\Sigma|}(|C|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

- The rate of an error-correcting code is rate $R = \frac{\log_{|\Sigma|}(|C|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.

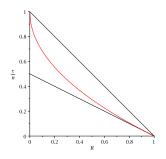


- The rate of an error-correcting code is rate $R = \frac{\log_{|\Sigma|}(|C|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.



• Unique decoding: $\tau/n < \frac{1}{2}(1-R).$

- The rate of an error-correcting code is rate $R = \frac{\log_{|\Sigma|}(|C|)}{n}$.
- The relative number of errors it can correct is denoted by $\frac{\tau}{n}$.



- Unique decoding: $\tau/n < \frac{1}{2}(1-R).$
- Guruswami–Sudan algorithm: $\tau/n < 1 \sqrt{R}$.

• Furthermore: The code must be efficiently list decodable.

Contents

List decoding of error-correcting codes

2 Fast list decoding of Reed–Solomon codes

3 Fast list decoding of certain AG codes

Wu decoding of Reed–Solomon codes

Reed–Solomon codes

• A Reed–Solomon code of length *n* and rate R = k/n:

$$\mathcal{C} = \left\{ \left(f(\alpha_1), \dots, f(\alpha_n) \right) \mid f(x) \in \mathbb{F}_q[x], \deg(f) < k \right\},\$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

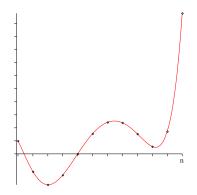
Alphabet is $\Sigma = \mathbb{F}_q$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$ are distinct.

Reed–Solomon codes

• A Reed–Solomon code of length *n* and rate R = k/n:

$$\mathcal{C} = \left\{ \left(f(\alpha_1), \ldots, f(\alpha_n) \right) \mid f(x) \in \mathbb{F}_q[x], \deg(f) < k \right\},$$

Alphabet is $\Sigma = \mathbb{F}_q$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$ are distinct.

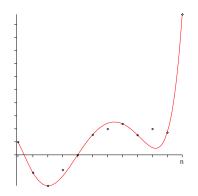


Reed–Solomon codes

• A Reed–Solomon code of length *n* and rate R = k/n:

$$\mathcal{C} = \left\{ \left(f(\alpha_1), \ldots, f(\alpha_n) \right) \mid f(x) \in \mathbb{F}_q[x], \deg(f) < k \right\},$$

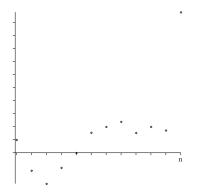
Alphabet is $\Sigma = \mathbb{F}_q$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$ are distinct.



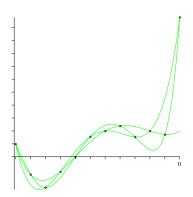
- 日本 - 1 日本 - 日本 - 日本

• A list decoder must find $f(x) \in \mathbb{F}_q[x]$, with deg(f) < k, that passes through $n - \tau$ of the received points.

(日)、(四)、(E)、(E)、(E)

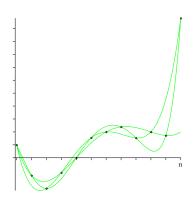


• A list decoder must find $f(x) \in \mathbb{F}_q[x]$, with deg(f) < k, that passes through $n - \tau$ of the received points.



 Interpolate Q(x, y) through received points, with multiplicity s.

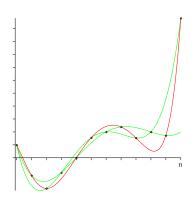
• A list decoder must find $f(x) \in \mathbb{F}_q[x]$, with deg(f) < k, that passes through $n - \tau$ of the received points.



- Interpolate Q(x, y) through received points, with multiplicity s.
- ... of least weighted degree.

$$\deg_w(x^i y^j) = i + (k-1)j$$

• A list decoder must find $f(x) \in \mathbb{F}_q[x]$, with deg(f) < k, that passes through $n - \tau$ of the received points.



- Interpolate Q(x, y) through received points, with multiplicity s.
- ... of least weighted degree.

$$\deg_w(x^iy^j)=i+(k-1)j$$

• If
$$\tau/n < 1 - \sqrt{R}$$
 then

Q(x,f(x))=0

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Translation of the interpolation problem

• List decoding depends on a fast interpolation algorithm.

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_q[x]$ -module of interpolation polynomials with $\deg_{\gamma}(Q) \leq \ell$, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\},\$$

where $E(x) = \prod_{i=1}^{n} (x - \alpha_i)$ and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_q[x]$ -module of interpolation polynomials with $\deg_{\gamma}(Q) \leq \ell$, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\},$$

where $E(x) = \prod_{i=1}^{n} (x - \alpha_i)$ and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

• Introduce matrix $\ell + 1 \times \ell + 1$ matrix **A**,

 $[\mathbf{A}]_{ij} = \text{Coefficient to } y^i \text{ in } j\text{-th basis function}$

Translation of the interpolation problem

- List decoding depends on a fast interpolation algorithm.
- The $\mathbb{F}_q[x]$ -module of interpolation polynomials with $\deg_{v}(Q) \leq \ell$, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\},\$$

where $E(x) = \prod_{i=1}^{n} (x - \alpha_i)$ and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

• Introduce matrix $\ell + 1 \times \ell + 1$ matrix **A**,

 $[\mathbf{A}]_{ij} = \text{Coefficient to } y^i \text{ in } j\text{-th basis function}$

• Then,

$$Q(x,y) = \sum_{i=0}^{\ell} q_i(x) y^i \in \mathbb{F}_q[x,y],$$

is an interpolation polynomial if and only if $\mathbf{q} = (q_0, \dots, q_\ell)$ is in the $\mathbb{F}_q[x]$ -column span of \mathbf{A} .

Interpolation

• For
$$s = 2$$
 and $\ell = 3$,

$$\mathbf{A} = \begin{bmatrix} E^2 & -ER & R^2 & -R^3 \\ 0 & E & -2R & 3R^2 \\ 0 & 0 & 1 & -3R \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interpolation

• For
$$s = 2$$
 and $\ell = 3$,

$$\mathbf{A} = \begin{bmatrix} E^2 & -ER & R^2 & -R^3 \\ 0 & E & -2R & 3R^2 \\ 0 & 0 & 1 & -3R \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

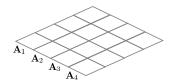
• The column span of **A** gives all interpolation polynomials. We look for short vectors, with respect to weighted degree.

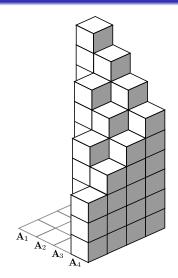
• Gaussian elimination-style algorithm: Cancel highest terms.

Algorithm: Gaussian elimination

• Represent matrix as grid.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

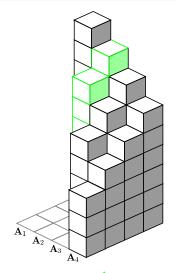




- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

$$\deg_w(\mathbf{A}_{i,j}) = \ \deg(\mathbf{A}_{i,j}) + (k-1)j.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



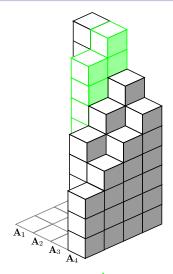
- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

 $\deg_w(\mathbf{A}_{i,j}) =$ $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Gaussian elimination.

 \mathbf{A}_2



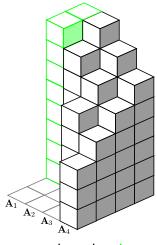
- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

 $\deg_w(\mathbf{A}_{i,j}) =$ $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Gaussian elimination.

 xA_2



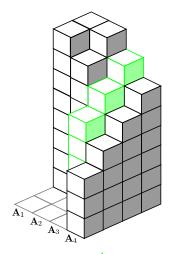
 $\mathbf{A}_1 + \alpha x \mathbf{A}_2 \rightarrow \mathbf{A}_1$

- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

 $\deg_w(\mathbf{A}_{i,j}) =$ $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

• Gaussian elimination.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・



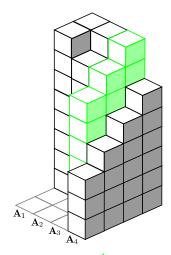
- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

 $\deg_w(\mathbf{A}_{i,j}) =$ $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Gaussian elimination.

 \mathbf{A}_3



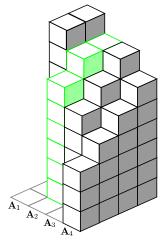
- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

 $\deg_w(\mathbf{A}_{i,j}) =$ $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Gaussian elimination.

 $x\mathbf{A}_3$



 $\mathbf{A}_2 + \alpha x \mathbf{A}_3 \rightarrow \mathbf{A}_2$

- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

$$\deg_w(\mathbf{A}_{i,j}) = \ \deg(\mathbf{A}_{i,j}) + (k-1)j.$$

• Gaussian elimination.

・ロト・西ト・西ト・日・ 日・ シック

- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

$$\begin{split} \deg_w(\mathbf{A}_{i,j}) &= \\ \deg(\mathbf{A}_{i,j}) + (k-1)j. \end{split}$$

- Gaussian elimination.
- Continue the process, until leading coordinates occur in distinct rows.

・ロト・雪ト・雪ト・雪 シック

Algorithm: Gaussian elimination

- Represent matrix as grid.
- Represent (*i*, *j*)-th entry by stack of cubes:

$$\deg_w(\mathbf{A}_{i,j}) =$$

 $\deg(\mathbf{A}_{i,j}) + (k-1)j.$

- Gaussian elimination.
- Continue the process, until leading coordinates occur in distinct rows.
- Leads to algorithm requiring $\mathcal{O}\left(\ell^5 n^2\right) \mathbb{F}_q$ -multiplications.

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix U(A, t) representing the column operations made when "cutting down" the stack, i.e.
 - $\deg_w(\mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t)) \leq \deg_w(\mathbf{A}) t$ or
 - A · U(A, t) has all leading coordinates in distinct rows,

where $\deg_w(\mathbf{A}) = \sum_i \deg_w(\mathbf{A}_i)$.

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix U(A, t) representing the column operations made when "cutting down" the stack, i.e.

•
$$\deg_w(\mathbf{A} \cdot \mathbf{U}(\mathbf{A},t)) \leq \deg_w(\mathbf{A}) - t$$
 or

• A · U(A, t) has all leading coordinates in distinct rows,

where $\deg_w(\mathbf{A}) = \sum_i \deg_w(\mathbf{A}_i)$.

• Observation:

$$\mathbf{U}(\mathbf{A},t) = \mathbf{U}(\mathbf{A}, \lceil t/2 \rceil) \cdot \mathbf{U}(\mathbf{A}',t-d),$$

where $\mathbf{A}' = \mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t/2)$ and $d = \deg_w \mathbf{A} - \deg_w \mathbf{A}'$.

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich.
- Introduce matrix U(A, t) representing the column operations made when "cutting down" the stack, i.e.

•
$$\deg_w({f A}\cdot{f U}({f A},t))\leq \deg_w({f A})-t$$
 or

• A · U(A, t) has all leading coordinates in distinct rows,

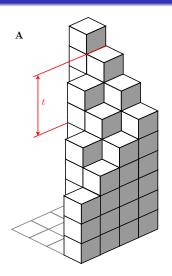
where $\deg_w(\mathbf{A}) = \sum_i \deg_w(\mathbf{A}_i)$.

• Observation:

$$\mathbf{U}(\mathbf{A},t) = \mathbf{U}(\mathbf{A}, \lceil t/2 \rceil) \cdot \mathbf{U}(\mathbf{A}',t-d),$$

where $\mathbf{A}' = \mathbf{A} \cdot \mathbf{U}(\mathbf{A}, t/2)$ and $d = \deg_w \mathbf{A} - \deg_w \mathbf{A}'$.

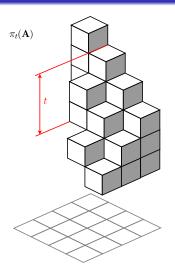
• Leads to divide and conquer algorithm. Handle base case **U**(**A**, 1) by Gaussian elimination.



• Subproblems are easy:

$$\mathbf{U}(\mathbf{A},t)=\mathbf{U}(\pi_t(\mathbf{A}),t).$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

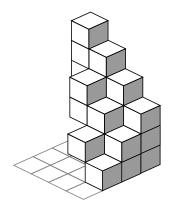


• Subproblems are easy:

$$\mathbf{U}(\mathbf{A},t)=\mathbf{U}(\pi_t(\mathbf{A}),t).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\pi_t(\mathbf{A})$

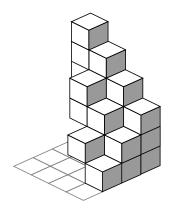


• Subproblems are easy:

$$\mathbf{U}(\mathbf{A},t)=\mathbf{U}(\pi_t(\mathbf{A}),t).$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

 $\pi_t(\mathbf{A})$



• Subproblems are easy:

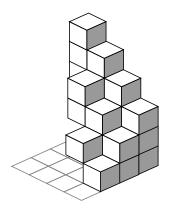
$$\mathbf{U}(\mathbf{A},t)=\mathbf{U}(\pi_t(\mathbf{A}),t).$$

 Combining subproblems is easy:

Entries in U(A, t) have at most 2t coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\pi_t(\mathbf{A})$



• Subproblems are easy:

$$\mathbf{U}(\mathbf{A},t)=\mathbf{U}(\pi_t(\mathbf{A}),t).$$

• Combining subproblems is easy:

Entries in U(A, t) have at most 2t coefficients.

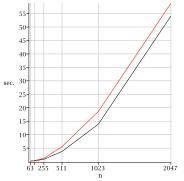
Leads to algorithm requiring

 $\mathcal{O}\left(\ell^5 n \log^2(\ell n) \log \log(\ell n)\right)$

 \mathbb{F}_q -multiplications.

Comparison and conclusions

• The divide and conquer algorithm is asymptotically faster than Gaussian elimination.

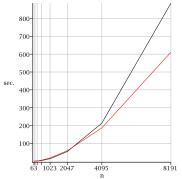


Gaussian elimination $\mathcal{O}\left(\ell^5 n^2\right)$ Divide and conquer $\mathcal{O}\left(\ell^5 n \log^2(\ell n) \log \log(\ell n)\right)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Comparison and conclusions

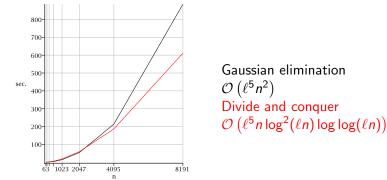
• The divide and conquer algorithm is asymptotically faster than Gaussian elimination.



Gaussian elimination $\mathcal{O}(\ell^5 n^2)$ Divide and conquer $\mathcal{O}(\ell^5 n \log^2(\ell n) \log \log(\ell n))$

Comparison and conclusions

• The divide and conquer algorithm is asymptotically faster than Gaussian elimination.



 The algorithm works in a more general setting: list decoding of certain algebraic geometry codes.

Contents

List decoding of error-correcting codes

2 Fast list decoding of Reed–Solomon codes

3 Fast list decoding of certain AG codes

Wu decoding of Reed–Solomon codes

AG codes

• \mathfrak{C} a simple C_{ab} curve, i.e. a nonsingular affine curve given by a polynomial of the form $F(x_1, x_2) = 0$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

AG codes

- \mathfrak{C} a simple C_{ab} curve, i.e. a nonsingular affine curve given by a polynomial of the form $F(x_1, x_2) = 0$ such that
 - The numbers $\gamma = \deg_{X_2} F$ and $\delta = \deg_{X_1} F$ are relatively prime.

AG codes

- \mathfrak{C} a simple C_{ab} curve, i.e. a nonsingular affine curve given by a polynomial of the form $F(x_1, x_2) = 0$ such that
 - The numbers $\gamma = \deg_{X_2} F$ and $\delta = \deg_{X_1} F$ are relatively prime.
 - Any monomial $x_1^i x_2^j$ in the support of F satisfies $\gamma i + \delta j \leq \gamma \delta$.

AG codes

- \mathfrak{C} a simple C_{ab} curve, i.e. a nonsingular affine curve given by a polynomial of the form $F(x_1, x_2) = 0$ such that
 - The numbers $\gamma = \deg_{X_2} F$ and $\delta = \deg_{X_1} F$ are relatively prime.
 - Any monomial $x_1^i x_2^j$ in the support of F satisfies $\gamma i + \delta j \leq \gamma \delta$.

- A simple C_{ab} -curve has a unique point at infinity denoted by P_{∞} .
- $v_{P_{\infty}}(x_1^i x_2^j) = -i\gamma j\delta.$

AG codes

- \mathfrak{C} a simple C_{ab} curve, i.e. a nonsingular affine curve given by a polynomial of the form $F(x_1, x_2) = 0$ such that
 - The numbers $\gamma = \deg_{X_2} F$ and $\delta = \deg_{X_1} F$ are relatively prime.
 - Any monomial $x_1^i x_2^j$ in the support of F satisfies $\gamma i + \delta j \leq \gamma \delta$.
- A simple C_{ab} -curve has a unique point at infinity denoted by P_{∞} .

•
$$v_{P_{\infty}}(x_1^i x_2^j) = -i\gamma - j\delta.$$

• An AG code from a simple C_{ab} -curve of length *n*:

$$\mathcal{C} = \{(f(\alpha_1),\ldots,f(\alpha_n)) \mid f(x) \in L(\mu P_{\infty}), v_{P_{\infty}}(f) + \mu \geq 0\},\$$

Alphabet is $\Sigma = \mathbb{F}_q$ and $\alpha_1, \ldots, \alpha_n \in \mathfrak{C}(\mathbb{F}_q)$ are distinct affine points.

• A list decoder must find $f(x) \in \mathbb{F}_q[x_1, x_2]/(F(x_1, x_2))$, with $v_{P_{\infty}}(f) + \mu \ge 0$, that passes through $n - \tau$ of the received points.

• A list decoder must find $f(x) \in \mathbb{F}_q[x_1, x_2]/(F(x_1, x_2))$, with $v_{P_{\infty}}(f) + \mu \ge 0$, that passes through $n - \tau$ of the received points.

 Interpolate Q(x₁, x₂, y) through received points, with multiplicity s.

- A list decoder must find $f(x) \in \mathbb{F}_q[x_1, x_2]/(F(x_1, x_2))$, with $v_{P_{\infty}}(f) + \mu \ge 0$, that passes through $n \tau$ of the received points.
- Interpolate Q(x₁, x₂, y) through received points, with multiplicity s.
- ... of least weighted degree.

$$\mathsf{deg}_w(x_1^{i_1}x_2^{i_2}y^j)=i_1\gamma+i_2\delta+(k-1)j$$

- A list decoder must find $f(x) \in \mathbb{F}_q[x_1, x_2]/(F(x_1, x_2))$, with $v_{P_{\infty}}(f) + \mu \ge 0$, that passes through $n \tau$ of the received points.
- Interpolate Q(x₁, x₂, y) through received points, with multiplicity s.
- ... of least weighted degree.

$$\deg_w(x_1^{i_1}x_2^{i_2}y^j) = i_1\gamma + i_2\delta + (k-1)j$$

• If $\tau/n < 1 - \sqrt{R}$ then

 $Q(x_1, x_2, f(x_1, x_2)) = 0$

 The F_q[x₁, x₂]/(F(x₁, x₂))-module of interpolation polynomials with deg_y(Q) ≤ ℓ, is spanned by

$$\left\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\right\}.$$

 The F_q[x₁, x₂]/(F(x₁, x₂))-module of interpolation polynomials with deg_y(Q) ≤ ℓ, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\}.$$

• E satisfies

$$(E) = \sum_{i=1}^{n} \alpha_i - nP_{\infty}$$

n

and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

 The F_q[x₁, x₂]/(F(x₁, x₂))-module of interpolation polynomials with deg_y(Q) ≤ ℓ, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\}.$$

• E satisfies

$$(E) = \sum_{i=1}^{n} \alpha_i - nP_{\infty}$$

and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

Find a generating set of the module viewed as 𝔽_q[x₁] module.
 One finds a generating set of cardinality γ(ℓ + 1).

 The F_q[x₁, x₂]/(F(x₁, x₂))-module of interpolation polynomials with deg_y(Q) ≤ ℓ, is spanned by

$$\Big\{E^{s}, E^{s-1}(y-R), \ldots, (y-R)^{s}, (y-R)^{s+1}, \ldots, (y-R)^{\ell}\Big\}.$$

• E satisfies

$$(E) = \sum_{i=1}^{n} \alpha_i - nP_{\infty}$$

and $R(\alpha_i) = y_i$ for $1 \le i \le n$.

- Find a generating set of the module viewed as F_q[x₁] module.
 One finds a generating set of cardinality γ(ℓ + 1).
- Introduce matrix $\gamma(\ell+1) imes \gamma(\ell+1)$ matrix **A**,

 $[\mathbf{A}]_{(ij),(i'j')} = \text{Coefficient to } x_2^i y^j$ in (i',j')-th basis function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algorithm: Divide and conquer

• Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.

Algorithm: Divide and conquer

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.
- Leads to algorithm requiring

$$\mathcal{O}\left(\ell^5\gamma^3(\textit{n}+\gamma\delta)\log^2(\ell(\textit{n}+\gamma\delta))\log\log(\ell(\textit{n}+\gamma\delta))
ight)$$

 \mathbb{F}_q -multiplications.

- Extend and generalize idea behind divide and conquer algorithm by Alekhnovich further.
- Again leads to divide and conquer algorithm.
- Leads to algorithm requiring

$$\mathcal{O}\left(\ell^5\gamma^3(\textit{n}+\gamma\delta)\log^2(\ell(\textit{n}+\gamma\delta))\log\log(\ell(\textit{n}+\gamma\delta))
ight)$$

 \mathbb{F}_q -multiplications.

• For the well-known Hermitian curve one can list-decode one-point AG codes in

$$\mathcal{O}\left(\ell^5 n^2 \log^2(\ell n) \log \log(\ell n)\right)$$

 $\mathbb{F}_{q^2}\text{-multiplications.}$ Note that in this case $\gamma=q,\ \delta=q+1$ and $n=q^3.$

Contents

List decoding of error-correcting codes

Past list decoding of Reed–Solomon codes

- 3 Fast list decoding of certain AG codes
- Wu decoding of Reed–Solomon codes

• Sudan's algorithm for $\ell = 1$: find

$$Q(x,y) = q_1(x)y + q_0(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

such that $Q(\alpha_i, y_i) = 0$.

• Sudan's algorithm for $\ell = 1$: find

$$Q(x,y) = q_1(x)y + q_0(x)$$

such that $Q(\alpha_i, y_i) = 0$.

• Leads to a (Gao) key equation

$$q_1(x)R(x) \equiv -q_0(x) \mod E(x),$$

• Sudan's algorithm for $\ell = 1$: find

$$Q(x,y) = q_1(x)y + q_0(x)$$

such that $Q(\alpha_i, y_i) = 0$.

• Leads to a (Gao) key equation

$$q_1(x)R(x) \equiv -q_0(x) \mod E(x),$$

• Which implies the standard key equation

$$\Lambda(X)S(X)\equiv\Omega(x)\mod x^{n-k}.$$

• Sudan's algorithm for $\ell = 1$: find

$$Q(x,y) = q_1(x)y + q_0(x)$$

such that $Q(\alpha_i, y_i) = 0$.

• Leads to a (Gao) key equation

$$q_1(x)R(x) \equiv -q_0(x) \mod E(x),$$

• Which implies the standard key equation

$$\Lambda(X)S(X)\equiv\Omega(x)\mod x^{n-k}$$
.

• Solving the key equation: use EEA on S(x) and x^{n-k} . Finds $\Lambda(x)$ and $\Omega(x)$ if $2\tau < n - k + 1$.

• The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2\tau \ge n - k + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2\tau \ge n k + 1$.
- Idea: working in the $\mathbb{F}_q[x]$ -module generated by y S(x) and x^{n-k} we have

$$\Omega(x) - \Lambda(x)y = f_1(x)h_1(x,y) + f_2(x)h_2(x,y).$$

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2\tau \ge n k + 1$.
- Idea: working in the $\mathbb{F}_q[x]$ -module generated by y S(x) and x^{n-k} we have

$$\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y).$$

• $h_1(x, y)$ and $h_2(x, y)$ are the output of (essentially) EEA on y - S(x) and x^{n-k} .

- The Wu list decoder focuses on finding all relevant pairs $(\Lambda(x), \Omega(x))$ if $2\tau \ge n k + 1$.
- Idea: working in the $\mathbb{F}_q[x]$ -module generated by y S(x) and x^{n-k} we have

$$\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y).$$

- $h_1(x, y)$ and $h_2(x, y)$ are the output of (essentially) EEA on y S(x) and x^{n-k} .
- f₁(x) and f₂(x) are unknown polynomials, but upper bounds on their degrees are known.

As before: $\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

As before: $\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y)$.

• For error positions $x = \alpha$ we can determine the ratio between $f_1(\alpha)$ and $f_2(\alpha)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

As before: $\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y)$.

• For error positions $x = \alpha$ we can determine the ratio between $f_1(\alpha)$ and $f_2(\alpha)$.

f₁(x) and f₂(x) can be determined solving a rational interpolation problem (if τ is not too big).

As before: $\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y)$.

- For error positions $x = \alpha$ we can determine the ratio between $f_1(\alpha)$ and $f_2(\alpha)$.
- $f_1(x)$ and $f_2(x)$ can be determined solving a rational interpolation problem (if τ is not too big).
- Wu's list decoder can correct (generalized) Reed–Solomon codes up to $\tau < n \sqrt{n(n-d)}$ errors.

As before: $\Omega(x) - \Lambda(x)y = f_1(x)h_1(x, y) + f_2(x)h_2(x, y)$.

- For error positions $x = \alpha$ we can determine the ratio between $f_1(\alpha)$ and $f_2(\alpha)$.
- f₁(x) and f₂(x) can be determined solving a rational interpolation problem (if τ is not too big).
- Wu's list decoder can correct (generalized) Reed–Solomon codes up to $\tau < n \sqrt{n(n-d)}$ errors.
- Work in progress: apply Wu's list decoder to other classes of codes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you for your attention!