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Codewords and unique decoding

Codewords: Vectors c ∈ Σn. Code: C = {c1, . . . , cm}.

Minimum distance, d , is the minimal number of disagreeing
positions between any two codewords.

If the number of errors, τ , is less than d
2 then there is at most

one codeword within distance τ from any received word y.
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List decoding

If τ ≥ d
2 there might be a “small” list of codewords within

distance τ from y.

The decoder thus get a list of candidate messages.

We require the lists to be polynomially bounded in the code
length n.
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Error-correcting codes and list decoding

The rate of an error-correcting code is rate R =
log|Σ|(|C|)

n .

The relative number of errors it can correct is denoted by τ
n .

Unique decoding:
τ/n < 1

2 (1− R).

Guruswami–Sudan algorithm:
τ/n < 1−

√
R.

Furthermore: The code must be efficiently list decodable.
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Reed–Solomon codes

A Reed–Solomon code of length n and rate R = k/n:

C = {(f (α1), . . . , f (αn)) | f (x) ∈ Fq[x ], deg(f ) < k} ,

Alphabet is Σ = Fq and α1, . . . , αn ∈ Fq are distinct.
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List decoding Reed–Solomon codes

A list decoder must find f (x) ∈ Fq[x ], with deg(f ) < k, that
passes through n − τ of the received points.

Interpolate Q(x , y)
through received points,
with multiplicity s.

... of least weighted
degree.

degw (x iy j) = i + (k−1)j

If τ/n < 1−
√

R then

Q(x , f (x)) = 0
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Translation of the interpolation problem

List decoding depends on a fast interpolation algorithm.

The Fq[x ]–module of interpolation polynomials with
degy (Q) ≤ `, is spanned by{

E s ,E s−1(y − R), . . . , (y − R)s , (y − R)s+1, . . . , (y − R)`
}
,

where E (x) =
∏n

i=1(x − αi ) and R(αi ) = yi for 1 ≤ i ≤ n.

Introduce matrix `+ 1× `+ 1 matrix A,

[A]ij = Coefficient to y i in j-th basis function

Then,
Q(x , y) =

∑`
i=0qi (x)y i ∈ Fq[x , y ],

is an interpolation polynomial if and only if q = (q0, . . . , q`) is
in the Fq[x ]–column span of A.
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Interpolation

For s = 2 and ` = 3,

A =


E 2 −ER R2 −R3

0 E −2R 3R2

0 0 1 −3R
0 0 0 1

.

The column span of A gives all interpolation polynomials. We
look for short vectors, with respect to weighted degree.

Gaussian elimination-style algorithm: Cancel highest terms.
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Algorithm: Gaussian elimination

Represent matrix as grid.

Represent (i , j)-th entry by
stack of cubes:

degw (Ai ,j) =

deg(Ai ,j) + (k − 1)j .

Gaussian elimination.

Continue the process, until
leading coordinates occur in
distinct rows.

Leads to algorithm requiring
O
(
`5n2

)
Fq-multiplications.
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Algorithm: Divide and conquer

Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich.

Introduce matrix U(A, t) representing the column operations
made when “cutting down” the stack, i.e.

degw (A ·U(A, t)) ≤ degw (A)− t or
A ·U(A, t) has all leading coordinates in distinct rows,

where degw (A) =
∑

i degw (Ai ).

Observation:

U(A, t) = U(A, dt/2e) ·U(A′, t − d),

where A′ = A ·U(A, t/2) and d = degw A− degw A′.

Leads to divide and conquer algorithm. Handle base case
U(A, 1) by Gaussian elimination.
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Algorithm: Divide and conquer

Subproblems are easy:

U(A, t) = U(πt(A), t).

Combining subproblems is
easy:

Entries in U(A, t) have at
most 2t coefficients.

Leads to algorithm requiring

O
(
`5n log2(`n) log log(`n)

)
Fq-multiplications.
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Comparison and conclusions

The divide and conquer algorithm is asymptotically faster
than Gaussian elimination.

Gaussian elimination
O
(
`5n2

)
Divide and conquer
O
(
`5n log2(`n) log log(`n)

)

The algorithm works in a more general setting: list decoding
of certain algebraic geometry codes.
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AG codes

C a simple Cab curve, i.e. a nonsingular affine curve given by a
polynomial of the form F (x1, x2) = 0 such that

The numbers γ = degX2
F and δ = degX1

F are relatively
prime.
Any monomial x i

1x
j
2 in the support of F satisfies γi + δj ≤ γδ.

A simple Cab-curve has a unique point at infinity denoted by
P∞.

vP∞(x i
1x

j
2) = −iγ − jδ.

An AG code from a simple Cab-curve of length n:

C = {(f (α1), . . . , f (αn)) | f (x) ∈ L(µP∞), vP∞(f ) + µ ≥ 0} ,

Alphabet is Σ = Fq and α1, . . . , αn ∈ C(Fq) are distinct affine
points.
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List decoding AG codes

A list decoder must find f (x) ∈ Fq[x1, x2]/(F (x1, x2)), with
vP∞(f ) + µ ≥ 0, that passes through n − τ of the received
points.

Interpolate Q(x1, x2, y) through received points, with
multiplicity s.

... of least weighted degree.

degw (x i1
1 x i2

2 y j) = i1γ + i2δ + (k − 1)j

If τ/n < 1−
√

R then

Q(x1, x2, f (x1, x2)) = 0
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Translation of the interpolation problem

The Fq[x1, x2]/(F (x1, x2))–module of interpolation
polynomials with degy (Q) ≤ `, is spanned by{

E s ,E s−1(y − R), . . . , (y − R)s , (y − R)s+1, . . . , (y − R)`
}
.

E satisfies

(E ) =
n∑

i=1

αi − nP∞

and R(αi ) = yi for 1 ≤ i ≤ n.

Find a generating set of the module viewed as Fq[x1] module.
One finds a generating set of cardinality γ(`+ 1).

Introduce matrix γ(`+ 1)× γ(`+ 1) matrix A,

[A](ij),(i ′j ′) = Coefficient to x i
2y

j in (i ′, j ′)-th basis function
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Algorithm: Divide and conquer

Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich further.

Again leads to divide and conquer algorithm.

Leads to algorithm requiring

O
(
`5γ3(n + γδ) log2(`(n + γδ)) log log(`(n + γδ))

)
Fq-multiplications.

For the well-known Hermitian curve one can list-decode
one-point AG codes in

O
(
`5n2 log2(`n) log log(`n)

)
Fq2-multiplications. Note that in this case γ = q, δ = q + 1
and n = q3.
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The key equation for RS codes.

Sudan’s algorithm for ` = 1: find

Q(x , y) = q1(x)y + q0(x)

such that Q(αi , yi ) = 0.

Leads to a (Gao) key equation

q1(x)R(x) ≡ −q0(x) mod E (x),

Which implies the standard key equation

Λ(X )S(X ) ≡ Ω(x) mod xn−k .

Solving the key equation: use EEA on S(x) and xn−k . Finds
Λ(x) and Ω(x) if 2τ < n − k + 1.
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The Wu list decoder.

The Wu list decoder focuses on finding all relevant pairs
(Λ(x),Ω(x)) if 2τ ≥ n − k + 1.

Idea: working in the Fq[x ]-module generated by y − S(x) and
xn−k we have

Ω(x)− Λ(x)y = f1(x)h1(x , y) + f2(x)h2(x , y).

h1(x , y) and h2(x , y) are the output of (essentially) EEA on
y − S(x) and xn−k .

f1(x) and f2(x) are unknown polynomials, but upper bounds
on their degrees are known.
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The Wu list decoder.

As before: Ω(x)− Λ(x)y = f1(x)h1(x , y) + f2(x)h2(x , y).

For error positions x = α we can determine the ratio between
f1(α) and f2(α).

f1(x) and f2(x) can be determined solving a rational
interpolation problem (if τ is not too big).

Wu’s list decoder can correct (generalized) Reed–Solomon
codes up to τ < n −

√
n(n − d) errors.

Work in progress: apply Wu’s list decoder to other classes of
codes.
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Thank you for your attention!
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