Projected Subcodes of the Second Order Binary Reed-Muller Code

Matthieu Legeay
IRMAR, University of Rennes 1, France

$$
\text { CBC } 2012
$$

Plan

(1) Motivation and principle
(2) Recalls
(3) Results
(4) Conclusion and further works

Motivation

- Reed-Muller codes have efficient decoding algorithms

Motivation

- Reed-Muller codes have efficient decoding algorithms
\Rightarrow No algorithm reaches the lower bound on the minimum distance decoding capability

Motivation

- Reed-Muller codes have efficient decoding algorithms
\Rightarrow No algorithm reaches the lower bound on the minimum distance decoding capability
- Other algorithms using algebraic properties practically correct more errors

Motivation

- Reed-Muller codes have efficient decoding algorithms
\Rightarrow No algorithm reaches the lower bound on the minimum distance decoding capability
- Other algorithms using algebraic properties practically correct more errors
\Rightarrow The complexity of the decoder is quadratic in the code length

Principle

Take $y=c+e$ and compute :

$$
\sum_{i} \lambda_{i} \sigma_{i}(y)=\sum_{i} \lambda_{i} \sigma_{i}(c)+\sum_{i} \lambda_{i} \sigma_{i}(e)
$$

where $\left(\sigma_{i}\right)_{i} \in \operatorname{Perm}(C)$ and $\left(\lambda_{i}\right)_{i} \in \mathbb{F}_{2}$.

Principle

Take $y=c+e$ and compute :

$$
\sum_{i} \lambda_{i} \sigma_{i}(y)=\sum_{i} \lambda_{i} \sigma_{i}(c)+\sum_{i} \lambda_{i} \sigma_{i}(e)
$$

where $\left(\sigma_{i}\right)_{i} \in \operatorname{Perm}(C)$ and $\left(\lambda_{i}\right)_{i} \in \mathbb{F}_{2}$.
$\Rightarrow c^{\prime}=\sum_{i} \lambda_{i} \sigma_{i}(c)$ lives in a subcode $C_{a d}$ of C, with $k_{a d} \leq k$.

Principle

Take $y=c+e$ and compute :

$$
\sum_{i} \lambda_{i} \sigma_{i}(y)=\sum_{i} \lambda_{i} \sigma_{i}(c)+\sum_{i} \lambda_{i} \sigma_{i}(e)
$$

where $\left(\sigma_{i}\right)_{i} \in \operatorname{Perm}(C)$ and $\left(\lambda_{i}\right)_{i} \in \mathbb{F}_{2}$.
$\Rightarrow c^{\prime}=\sum_{i} \lambda_{i} \sigma_{i}(c)$ lives in a subcode $C_{a d}$ of C, with $k_{a d} \leq k$.
$\Rightarrow e^{\prime}=\sum_{i} \lambda_{i} \sigma_{i}(e)$ is an error vector, $w t\left(e^{\prime}\right) \leq \lambda t$.

Recalls

r-order Reed-Muller codes

Let $0 \leq r \leq m, n=2^{m}$ and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{F}_{2}^{m}\right)^{n}$.

$$
\mathcal{R}(r, m)=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \in \mathbb{F}_{2}^{n}\right\}
$$

with $f\left(x_{1}, \ldots, x_{m}\right)$ a binary multivariate polynomial of degree $\leq r$.

Recalls

r-order Reed-Muller codes

Let $0 \leq r \leq m, n=2^{m}$ and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{F}_{2}^{m}\right)^{n}$.

$$
\mathcal{R}(r, m)=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \in \mathbb{F}_{2}^{n}\right\}
$$

with $f\left(x_{1}, \ldots, x_{m}\right)$ a binary multivariate polynomial of degree $\leq r$.

- $\mathcal{R}(r, m)$ is a $\left[n=2^{m}, k=\sum_{i=0}^{r}\binom{m}{i}, d=2^{m-r}\right]$ code.

Recalls

r-order Reed-Muller codes

Let $0 \leq r \leq m, n=2^{m}$ and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{F}_{2}^{m}\right)^{n}$.

$$
\mathcal{R}(r, m)=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \in \mathbb{F}_{2}^{n}\right\}
$$

with $f\left(x_{1}, \ldots, x_{m}\right)$ a binary multivariate polynomial of degree $\leq r$.

- $\mathcal{R}(r, m)$ is a $\left[n=2^{m}, k=\sum_{i=0}^{r}\binom{m}{i}, d=2^{m-r}\right]$ code.
- $\mathcal{R}(0, m)$ is the repetition code.

Recalls

r-order Reed-Muller codes

Let $0 \leq r \leq m, n=2^{m}$ and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{F}_{2}^{m}\right)^{n}$.

$$
\mathcal{R}(r, m)=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \in \mathbb{F}_{2}^{n}\right\}
$$

with $f\left(x_{1}, \ldots, x_{m}\right)$ a binary multivariate polynomial of degree $\leq r$.

- $\mathcal{R}(r, m)$ is a $\left[n=2^{m}, k=\sum_{i=0}^{r}\binom{m}{i}, d=2^{m-r}\right]$ code.
- $\mathcal{R}(0, m)$ is the repetition code.
- $\mathcal{R}(m, m)$ is all the space \mathbb{F}_{2}^{n}.

Permutation group

Theorem

$$
\begin{aligned}
\operatorname{Perm}(\mathcal{R}(r, m)) & =G A_{m}\left(\mathbb{F}_{2}\right) \\
& =\mathcal{T} \rtimes G L_{m}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

Permutation group

Theorem

$$
\begin{aligned}
\operatorname{Perm}(\mathcal{R}(r, m)) & =G A_{m}\left(\mathbb{F}_{2}\right) \\
& =\mathcal{T} \rtimes G L_{m}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

$\cdot \mathcal{T}=\left\{\begin{array}{rll}T_{\alpha}: & \mathbb{F}_{2}^{m} & \rightarrow \\ \mathbb{F}_{2}^{m} \\ x & \mapsto & x+\alpha\end{array}\right\}, \alpha \in \mathbb{F}_{2}^{m}$

$$
T_{\alpha} \cdot f(x) \stackrel{\text { def }}{=} f\left(T_{\alpha}(x)\right)=f(x+\alpha)
$$

Permutation group

Theorem

$$
\begin{aligned}
\operatorname{Perm}(\mathcal{R}(r, m)) & =G A_{m}\left(\mathbb{F}_{2}\right) \\
& =\mathcal{T} \rtimes G L_{m}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

$\cdot \mathcal{T}=\left\{\begin{array}{rll}\left.T_{\alpha}: \begin{array}{rll}\mathbb{F}_{2}^{m} & \rightarrow & \mathbb{F}_{2}^{m} \\ x & \mapsto & x+\alpha\end{array}\right\}, \alpha \in \mathbb{F}_{2}^{m}, ~ \\ & & \end{array}\right.$

$$
T_{\alpha} \cdot f(x) \stackrel{\text { def }}{=} f\left(T_{\alpha}(x)\right)=f(x+\alpha)
$$

- $G L_{m}\left(\mathbb{F}_{2}\right)=\{$ non-singular binary matrices G of size $m \times m\}$

$$
G \cdot f(x) \stackrel{\text { def }}{=} f(G \cdot x)
$$

With \mathcal{T}

Proposition 1

$\left(I d+T_{\alpha}\right) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\left\{f+T_{\alpha} \cdot f \mid f \in \mathcal{R}(2, m)\right\}$ is a subcode of $\mathcal{R}(2, m)$.

With \mathcal{T}

Proposition 1

$\left(l d+T_{\alpha}\right) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\left\{f+T_{\alpha} \cdot f \mid f \in \mathcal{R}(2, m)\right\}$ is a subcode of $\mathcal{R}(2, m)$.

Proposition 2

(Id $\left.+T_{\alpha}\right) \cdot \mathcal{R}(2, m)$ is isomorphic to $\mathcal{R}(1, m-1)$.

With \mathcal{T}

Proposition 1

$\left(I d+T_{\alpha}\right) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\left\{f+T_{\alpha} \cdot f \mid f \in \mathcal{R}(2, m)\right\}$ is a subcode of $\mathcal{R}(2, m)$.

Proposition 2

(Id $\left.+T_{\alpha}\right) \cdot \mathcal{R}(2, m)$ is isomorphic to $\mathcal{R}(1, m-1)$.

Idea for proof...
(1) $\left(f+T_{\alpha} \cdot f\right)$ is an affine function $x \Rightarrow r^{\prime}=1$
(2) $\left(f+T_{\alpha} \cdot f\right)(x+\alpha)=\left(f+T_{\alpha} \cdot f\right)(x) \Rightarrow m^{\prime}=m-1$

With $G L_{m}\left(\mathbb{F}_{2}\right)$

Proposition 1

$(I d+G) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\{f+G \cdot f \mid f \in \mathcal{R}(2, m)\}$ is a subcode of $\mathcal{R}(2, m)$.

With $G L_{m}\left(\mathbb{F}_{2}\right)$

Proposition 1
$(I d+G) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\{f+G \cdot f \mid f \in \mathcal{R}(2, m)\}$ is a subcode of $\mathcal{R}(2, m)$.

What are the properties of this subcode?
Length? Dimension? Minimum Distance?

With $G L_{m}\left(\mathbb{F}_{2}\right)$

Proposition 1

$(I d+G) \cdot \mathcal{R}(2, m) \stackrel{\text { def }}{=}\{f+G \cdot f \mid f \in \mathcal{R}(2, m)\}$ is a subcode of $\mathcal{R}(2, m)$.

What are the properties of this subcode? Length ? Dimension ? Minimum Distance?
\Rightarrow Hard to answer in the general case.

With $G L_{m}\left(\mathbb{F}_{2}\right)$

- By writing $f(x)=x^{t} F x+a_{f}$, with F upper triangular,

$$
(f+G \cdot f)(x)=x^{t}\left(F+G^{t} F G\right) x
$$

$\rightsquigarrow \mathcal{P}_{G}: \begin{array}{cl}\mathcal{M}_{m}\left(\mathbb{F}_{2}\right) & \rightarrow \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \\ F & \mapsto F+G^{t} F G\end{array}$ does not keep upper-triangularity.

With $G L_{m}\left(\mathbb{F}_{2}\right)$

- By writing $f(x)=x^{t} F x+a_{f}$, with F upper triangular,

$$
(f+G \cdot f)(x)=x^{t}\left(F+G^{t} F G\right) x
$$

$\rightsquigarrow \mathcal{P}_{G}: \begin{array}{cl}\mathcal{M}_{m}\left(\mathbb{F}_{2}\right) & \rightarrow \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \\ F & \mapsto F+G^{t} F G\end{array}$ does not keep upper-triangularity.

- Rewrite $G=I d+E$, hence

$$
\begin{aligned}
& (f+G \cdot f)(x)=x^{t}\left(E^{t} F+F E+E^{t} F E\right) x \\
& \rightsquigarrow \mathcal{P}_{E}: \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \rightarrow \quad \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \\
& F \quad \mapsto E^{t} F+F E+E^{t} F E
\end{aligned}
$$

With $G L_{m}\left(\mathbb{F}_{2}\right)$

- By writing $f(x)=x^{t} F x+a_{f}$, with F upper triangular,

$$
(f+G \cdot f)(x)=x^{t}\left(F+G^{t} F G\right) x
$$

$\rightsquigarrow \mathcal{P}_{G}: \begin{array}{cl}\mathcal{M}_{m}\left(\mathbb{F}_{2}\right) & \rightarrow \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \\ F & \mapsto F+G^{t} F G\end{array}$ does not keep upper-triangularity.

- Rewrite $G=I d+E$, hence

$$
\begin{aligned}
&(f+G \cdot f)(x)=x^{t}\left(E^{t} F+F E+E^{t} F E\right) x \\
& \rightsquigarrow \mathcal{P}_{E}: \begin{array}{ccc}
\mathcal{M}_{m}\left(\mathbb{F}_{2}\right) & \rightarrow & \mathcal{M}_{m}\left(\mathbb{F}_{2}\right) \\
F & \mapsto E^{t} F+F E+E^{t} F E
\end{array}, ~
\end{aligned}
$$

\Rightarrow Rank of E

Result on length

Proposition 2
$(I d+G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n-2^{m-r}$

Result on length

Proposition 2
$(I d+G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n-2^{m-r}$

- If $r=1, n^{\prime}=2^{m-1}$
we find again that the subcode is isomorphic to $\mathcal{R}(1, m-1)$.
- If $r=2, n^{\prime}=2^{m}-2^{m-2} \ldots$

Result on length

Proposition 2
$(I d+G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n-2^{m-r}$

- If $r=1, n^{\prime}=2^{m-1}$ we find again that the subcode is isomorphic to $\mathcal{R}(1, m-1)$.
- If $r=2, n^{\prime}=2^{m}-2^{m-2} \ldots$
\Rightarrow We can do better...
Some columns are equal in practice.

Result on dimension

Proposition 3

$(I d+G) \cdot \mathcal{R}(2, m)$ has dimension $k^{\prime} \leq 4 r(m-r)+1$

Idea for proof...
(1) $\operatorname{Rank}\left(E^{t} F+F E+E^{t} F E\right) \leq 2 r$
(2) $\mathcal{N}(m, r)=\sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{\left(2^{m}-2^{i}\right)\left(2^{m}-2^{i}\right)}{2^{j}-2^{i}} \leq 2^{(2 m-r) r+1)}$

Result on dimension

Proposition 3

$(I d+G) \cdot \mathcal{R}(2, m)$ has dimension $k^{\prime} \leq 4 r(m-r)+1$

Idea for proof...
(1) $\operatorname{Rank}\left(E^{t} F+F E+E^{t} F E\right) \leq 2 r$
(2) $\mathcal{N}(m, r)=\sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{\left(2^{m}-2^{i}\right)\left(2^{m}-2^{i}\right)}{2^{j}-2^{i}} \leq 2^{(2 m-r) r+1)}$

- If $r=1, k^{\prime} \leq 4(m-1)+1$
- If $r=2, k^{\prime} \leq 8(m-2)+1 \ldots$

Result on dimension

Proposition 3

$(I d+G) \cdot \mathcal{R}(2, m)$ has dimension $k^{\prime} \leq 4 r(m-r)+1$

Idea for proof...
(1) $\operatorname{Rank}\left(E^{t} F+F E+E^{t} F E\right) \leq 2 r$
(2) $\mathcal{N}(m, r)=\sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{\left(2^{m}-2^{i}\right)\left(2^{m}-2^{i}\right)}{2^{j}-2^{i}} \leq 2^{(2 m-r) r+1)}$

- If $r=1, k^{\prime} \leq 4(m-1)+1$
- If $r=2, k^{\prime} \leq 8(m-2)+1 \ldots$
\Rightarrow This bound is only intersting for small values of $r(r \leq 0.15 m)$.

Result on dimension

With E of shape $E\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \mathbf{e}_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{m-1} & & & 0\end{array}\right)$
where \mathbf{e}_{i} is a binary vector of length i

Result on dimension

With E of shape $E\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \mathbf{e}_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{m-1} & & & 0\end{array}\right)$ where \mathbf{e}_{i} is a binary vector of length i

Proposition 4
$(I d+G) \cdot \mathcal{R}(2, m)$ has dimension $k^{\prime} \leq \sum_{i=0}^{r-1}(m-i)=r m-\frac{r(r-1)}{2}$

Result on dimension

With E of shape $E\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \mathbf{e}_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{m-1} & & & 0\end{array}\right)$
where \mathbf{e}_{i} is a binary vector of length i

Proposition 4
$(I d+G) \cdot \mathcal{R}(2, m)$ has dimension $k^{\prime} \leq \sum_{i=0}^{r-1}(m-i)=r m-\frac{r(r-1)}{2}$
\Rightarrow This bound is never reached in practice...

Result on minimum distance

Remark

$(I d+G) \cdot \mathcal{R}(2, m)$ has minimum distance $d^{\prime} \geq d=2^{m-2}$

Result on minimum distance

Remark

$(I d+G) \cdot \mathcal{R}(2, m)$ has minimum distance $d^{\prime} \geq d=2^{m-2}$
\Rightarrow In practice $d^{\prime}=d=2^{m-2} \ldots$

Examples (1/2)

$$
G=I d+E=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
g_{1} & 1 & 0 & 0 & 0 \\
0 & g_{2} & 1 & 0 & 0 \\
0 & 0 & g_{3} & 1 & 0 \\
0 & 0 & 0 & g_{4} & 1
\end{array}\right)
$$

Examples (1/2)

$$
G=I d+E=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
g_{1} & 1 & 0 & 0 & 0 \\
0 & g_{2} & 1 & 0 & 0 \\
0 & 0 & g_{3} & 1 & 0 \\
0 & 0 & 0 & g_{4} & 1
\end{array}\right)
$$

- $G_{1}: g_{1}=1$ and $g_{2}=g_{3}=g_{4}=0$ $\left(I d+G_{1}\right) \cdot \mathcal{R}(2,5)$ is a $[32,4,8]$ subcode, isomorphic to $\mathcal{R}(1,3)$

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Examples (2/2)

- $G_{2}: g_{1}=g_{2}=1$ and $g_{3}=g_{4}=0$ $\left(I d+G_{2}\right) \cdot \mathcal{R}(2,5)$ is a $[32,8,8]$ subcode. We have $k^{\prime}=2 m-2 \leq 2 m-1$.

Examples (2/2)

- $G_{2}: g_{1}=g_{2}=1$ and $g_{3}=g_{4}=0$ $\left(I d+G_{2}\right) \cdot \mathcal{R}(2,5)$ is a $[32,8,8]$ subcode. We have $k^{\prime}=2 m-2 \leq 2 m-1$.
- $G_{3}: g_{1}=g_{2}=g_{3}=1$ and $g_{4}=0$ $\left(I d+G_{3}\right) \cdot \mathcal{R}(2,5)$ is a $[32,10,8]$ subcode. We have $k^{\prime}=3 m-5 \leq 3 m-3$.

Examples (2/2)

- $G_{2}: g_{1}=g_{2}=1$ and $g_{3}=g_{4}=0$ $\left(I d+G_{2}\right) \cdot \mathcal{R}(2,5)$ is a $[32,8,8]$ subcode. We have $k^{\prime}=2 m-2 \leq 2 m-1$.
- $G_{3}: g_{1}=g_{2}=g_{3}=1$ and $g_{4}=0$ $\left(I d+G_{3}\right) \cdot \mathcal{R}(2,5)$ is a $[32,10,8]$ subcode. We have $k^{\prime}=3 m-5 \leq 3 m-3$.
- $G_{4}: g_{1}=g_{2}=g_{3}=g_{4}=1$ $\left(I d+G_{4}\right) \cdot \mathcal{R}(2,5)$ is a $[32,12,8]$ subcode. We have $k^{\prime}=4 m-8 \leq 4 m-6$.

Conclusion

\Rightarrow We have constructed new subcodes from $\mathcal{R}(2, m)$
\Rightarrow We have a bound on the dimension of the projected codes, and in some cases we can tighten it.

Conclusion

\Rightarrow We have constructed new subcodes from $\mathcal{R}(2, m)$
\Rightarrow We have a bound on the dimension of the projected codes, and in some cases we can tighten it.

- To have better results for all possible matrices E.
- To understand the improvements we have in practice.
- To apply this principle with a view to decoding.

Thank You for your attention!

