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Motivation

Reed-Muller codes have efficient decoding algorithms

⇒ No algorithm reaches the lower bound on the minimum distance
decoding capability

Other algorithms using algebraic properties practically correct
more errors

⇒ The complexity of the decoder is quadratic in the code length
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Principle

Take y = c + e and compute :∑
i

λiσi (y) =
∑
i

λiσi (c) +
∑
i

λiσi (e)

where (σi )i ∈ Perm(C ) and (λi )i ∈ F2.

⇒ c ′ =
∑

i λiσi (c) lives in a subcode Cad of C , with kad ≤ k .

⇒ e ′ =
∑

i λiσi (e) is an error vector, wt(e ′) ≤ λt.
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Recalls

r -order Reed-Muller codes

Let 0 ≤ r ≤ m, n = 2m and (α1, . . . , αn) ∈ (Fm
2 )n.

R(r ,m) = {(f (α1), . . . , f (αn)) ∈ Fn
2}

with f (x1, . . . , xm) a binary multivariate polynomial of degree ≤ r .

R(r ,m) is a [n = 2m, k =
r∑

i=0

(m
i

)
, d = 2m−r ] code.

R(0,m) is the repetition code.

R(m,m) is all the space Fn
2.
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Permutation group

Theorem

Perm(R(r ,m)) = GAm(F2)
= T o GLm(F2)

T =

{
Tα :

Fm
2 → Fm

2

x 7→ x + α

}
, α ∈ Fm

2

Tα · f (x)
def
= f (Tα(x)) = f (x + α)

GLm(F2) = { non-singular binary matrices G of size m ×m}

G · f (x)
def
= f (G .x)
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With T

Proposition 1

(Id + Tα) · R(2,m)
def
= {f + Tα · f |f ∈ R(2,m)} is a subcode of

R(2,m).

Proposition 2

(Id + Tα) · R(2,m) is isomorphic to R(1,m − 1).

Idea for proof...

1 (f + Tα · f ) is an affine function x ⇒ r ′ = 1

2 (f + Tα · f )(x + α) = (f + Tα · f )(x)⇒ m′ = m − 1
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With GLm(F2)

Proposition 1

(Id + G ) · R(2,m)
def
= {f + G · f |f ∈ R(2,m)} is a subcode of

R(2,m).

What are the properties of this subcode ?
Length ? Dimension ? Minimum Distance ?

⇒ Hard to answer in the general case.
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With GLm(F2)

• By writing f (x) = x tFx + af , with F upper triangular,

(f + G · f )(x) = x t(F + G tFG )x

 PG :
Mm(F2) → Mm(F2)

F 7→ F + G tFG
does not keep

upper-triangularity.

• Rewrite G = Id + E , hence

(f + G · f )(x) = x t(E tF + FE + E tFE )x

 PE :
Mm(F2) → Mm(F2)

F 7→ E tF + FE + E tFE

⇒ Rank of E
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Result on length

Proposition 2

(Id + G ) · R(2,m) is isomorphic to a subcode of length n − 2m−r

If r = 1, n′ = 2m−1

we find again that the subcode is isomorphic to R(1,m − 1).

If r = 2, n′ = 2m − 2m−2...

⇒ We can do better...
Some columns are equal in practice.
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Result on dimension

Proposition 3

(Id + G ) · R(2,m) has dimension k ′ ≤ 4r(m − r) + 1

Idea for proof...

1 Rank(E tF + FE + E tFE ) ≤ 2r

2 N (m, r) =
r∑

j=0

j−1∏
i=0

(2m−2i )(2m−2i )
2j−2i ≤ 2(2m−r)r+1)

If r = 1, k ′ ≤ 4(m − 1) + 1

If r = 2, k ′ ≤ 8(m − 2) + 1...

⇒ This bound is only intersting for small values of r (r ≤ 0.15m).
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Result on dimension

With E of shape E (e1, . . . , em−1) =


0 0 · · · 0
e1 0 · · · 0
...

...
. . .

...
em−1 0


where ei is a binary vector of length i

Proposition 4

(Id + G ) · R(2,m) has dimension k ′ ≤
r−1∑
i=0

(m − i) = rm − r(r−1)
2

⇒ This bound is never reached in practice...



Motivation and principle Recalls Results Conclusion and further works

Result on dimension

With E of shape E (e1, . . . , em−1) =


0 0 · · · 0
e1 0 · · · 0
...

...
. . .

...
em−1 0


where ei is a binary vector of length i

Proposition 4

(Id + G ) · R(2,m) has dimension k ′ ≤
r−1∑
i=0

(m − i) = rm − r(r−1)
2

⇒ This bound is never reached in practice...



Motivation and principle Recalls Results Conclusion and further works

Result on dimension

With E of shape E (e1, . . . , em−1) =


0 0 · · · 0
e1 0 · · · 0
...

...
. . .

...
em−1 0


where ei is a binary vector of length i

Proposition 4

(Id + G ) · R(2,m) has dimension k ′ ≤
r−1∑
i=0

(m − i) = rm − r(r−1)
2

⇒ This bound is never reached in practice...



Motivation and principle Recalls Results Conclusion and further works

Result on minimum distance

Remark

(Id + G ) · R(2,m) has minimum distance d ′ ≥ d = 2m−2

⇒ In practice d ′ = d = 2m−2...
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Examples (1/2)

G = Id + E =


1 0 0 0 0
g1 1 0 0 0
0 g2 1 0 0
0 0 g3 1 0
0 0 0 g4 1



G1 : g1 = 1 and g2 = g3 = g4 = 0
(Id + G1) · R(2, 5) is a [32, 4, 8] subcode,
isomorphic to R(1, 3)

1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
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Examples (2/2)

G2 : g1 = g2 = 1 and g3 = g4 = 0
(Id + G2) · R(2, 5) is a [32, 8, 8] subcode.
We have k ′ = 2m − 2 ≤ 2m − 1.

G3 : g1 = g2 = g3 = 1 and g4 = 0
(Id + G3) · R(2, 5) is a [32, 10, 8] subcode.
We have k ′ = 3m − 5 ≤ 3m − 3.

G4 : g1 = g2 = g3 = g4 = 1
(Id + G4) · R(2, 5) is a [32, 12, 8] subcode.
We have k ′ = 4m − 8 ≤ 4m − 6.
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Conclusion

⇒ We have constructed new subcodes from R(2,m)

⇒ We have a bound on the dimension of the projected codes, and
in some cases we can tighten it.

To have better results for all possible matrices E .

To understand the improvements we have in practice.

To apply this principle with a view to decoding.
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Thank You for your attention !
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