A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODE:

GRS CODES

ECP

MOTIVATION

OUR GOAL

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

I. MÁRQUEZ-CORBELLA¹ R. PELLIKAAN²

¹Department of Algebra, Geometry and Topology, University of Valladolid. Supported by a FPU grant AP2008-01598 by Spanish MEC.

²Department of Mathematics and Computing Science, Eindhoven University of Technology.

Code-based Cryptography Workshop (CBC) 2012

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

INTRODUCTION TO CODING THEORY

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATION

OUR GOAL

An [n, k] linear code C over \mathbb{F}_q is a k-dimensional subspace of \mathbb{F}_q^n .

Its size is $M = q^k$, the information rate is $R = \frac{k}{n}$ and the redundancy is n - k.

The generator matrix of C is a $k \times n$ matrix G whose rows form a basis of C, i.e.

$$\mathcal{C} = \left\{ \mathbf{x} G \mid \mathbf{x} \in \mathbb{F}_q^k \right\}.$$

■ The parity-check matrix of C is an (n - k) × n matrix H whose nullspace is generated by the codewords of C, i.e.

$$\mathcal{C} = \left\{ \mathbf{y} \in \mathbb{F}_q^n \mid H\mathbf{y}^T = \mathbf{0} \right\}.$$

- The hamming distance between $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$ is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$.
- The minimum distance of C is

 $d(\mathcal{C}) = \min \left\{ d_H(\mathbf{c}_1, \mathbf{c}_2) \mid \mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} \text{ and } \mathbf{c}_1 \neq \mathbf{c}_2 \right\}.$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MDS CODES

One of the most fascinating chapters in all of coding theory

▲□▶▲□▶▲□▶▲□▶ □ のQで

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATIO

OUR GOAL

Its length by $n(\mathcal{C}) \rightarrow$ Its dimension by $k(\mathcal{C}) \rightarrow$ Its minimum distance by $d(\mathcal{C})$

SINGLETON BOUND

 $d(\mathcal{C}) \leq n(\mathcal{C}) - k(\mathcal{C}) + 1$

If the equality holds $\Longrightarrow C$ is an MDS code.

EXAMPLES

1 The zero code of length n (i.e. the [n, 0, n + 1] linear code)

and its dual (i.e. \mathbb{F}_q^n which has parameters [n, n, 1]).

- **2** The [n, 1, n] repetition code over \mathbb{F}_q .
- 3 The (Extended / Generalized) Reed-Solomon codes.

F. J. MacWilliams, N. J. A. Sloane The theory of error-correcting codes II. North-Holland Mathematical Library, Vol 16.

MDS CODES

	 Every set of k coordinates form an information set. Every n - k-tuple of columns of a parity check matrix of C is independent.
	S Every k-tuple of columns of a generator matrix of C is independent.
	\mathcal{C}^{\perp} is MDS.
	$\square C$ is MDS.
	Let C be an $[n, k]$ code over \mathbb{F}_q . The following are equivalent:
	THEOREM: PROPERTIES OF MDS CODES
IDS CODES	A collection of some properties characterizing MDS codes:
A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR	

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

MODIFYING CODES

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECF

MOTIVATION

OUR GOAL

- → Let *C* be a linear [n, k] code over \mathbb{F}_q and (J, \overline{J}) be a partition of $\{1, \ldots, n\}$ where $J = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$ has *m* elements.
- → We denote by x_J = (x_{i1},..., x_{im}) the restriction of any vector x ∈ ℝⁿ_q to the coordinates indexed by J.
- → Via the operation of puncturing and shortening we can obtained codes of shorter lenght from C.

PUNCTURING A CODE (C_J)

We can punctured ${\mathcal C}$ by deleting columns from a generator matrix of ${\mathcal C}$ i.e.

 $\mathcal{C}_J = \left\{ \mathbf{c}_{\overline{J}} \mid \mathbf{c} \in \mathcal{C} \right\} \implies \mathcal{C}_J \text{ is an } [n(\mathcal{C}) - m, k(\mathcal{C}_J), d(\mathcal{C}_J)] \text{ code with }$

$$d(\mathcal{C}) - m \leq d(\mathcal{C}_J) \leq d(\mathcal{C})$$
 and $k(\mathcal{C}) - m \leq k(\mathcal{C}_J) \leq k(\mathcal{C})$

→ Moreover if m < d(C) then $k(C_J) = k(C)$.

SHORTENING A CODE (\mathcal{C}^J)

We can shorten C by deleting columns from a parity check matrix of C. Thus the words of C^J are codewords of the initial code that have a zero in the *J*-location, i.e.

 $\mathcal{C}^J = \left\{ \mathbf{c}_{\overline{J}} \mid \mathbf{c} \in \mathcal{C} \text{ and } \mathbf{c}_J = \mathbf{0} \right\} \quad \Rightarrow \quad \mathcal{C}^J \text{ is an } [n(\mathcal{C}) - m, k(\mathcal{C}^J), d(\mathcal{C}^J)] \text{ code with }$

 $d(\mathcal{C}) \leq d(\mathcal{C}^J)$ and $k(\mathcal{C}) - m \leq k(\mathcal{C}^J) \leq k(\mathcal{C})$

MODIFYING CODES

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECF

MOTIVATION

OUR GOAL

Some properties of these operations

1
$$\mathcal{C}^J \subseteq \mathcal{C}_J$$
.

2 dim
$$(\mathcal{C}^J)$$
 + dim $(\mathcal{C}_{\overline{J}})$ = dim (\mathcal{C}) .

3
$$(\mathcal{C}_J)^{\perp} = (\mathcal{C})^J$$
 and $(\mathcal{C}^J)^{\perp} = (\mathcal{C}^{\perp})_J$.

Lemma 1

Let C be an MDS code. If $n(C) - m \ge k(C)$, then C_J and C^J are MDS codes with parameters:

 $[n(\mathcal{C}) - m, k(\mathcal{C})]$ and $[n(\mathcal{C}) - m, k(\mathcal{C}) - m]$,

respectively.

GENERALIZED REED-SOLOMON CODES (GRS CODES)

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODE

GRS CODES

ECF

MOTIVATION

OUR GOAL

Let

- **a** = (a_1, \ldots, a_n) be an *n*-tuple of **mutually distinct** elements of $\mathbb{P}^1(\mathbb{F}_q)$.
- **b** = (b_1, \ldots, b_n) be an *n*-tuple of **nonzero** elements of \mathbb{F}_q .

The **GRS** code $GRS_k(\mathbf{a}, \mathbf{b})$ is defined by:

 $\operatorname{GRS}_k(\mathbf{a}, \mathbf{b}) = \{(f(a_1)b_1, \dots, f(a_n)b_n) \mid f \in \mathbb{F}_q[X] \text{ and } \deg(f) < k\}$

THEOREM: PARAMETERS OF $GRS_k(\mathbf{a}, \mathbf{b})$

- → The $GRS_k(\mathbf{a}, \mathbf{b})$ is an **MDS** code with parameters [n, k, n k + 1].
- → Furthermore a generator matrix of $GRS_k(\mathbf{a}, \mathbf{b})$ is given by

$$G_{\mathbf{a},\mathbf{b}} = \begin{pmatrix} b_1 & \dots & b_n \\ b_1 a_1 & \dots & b_n a_n \\ \vdots & \ddots & \vdots \\ b_1 a_1^{k-1} & \dots & b_n a_n^{k-1} \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} b_1 & \dots & b_{n-1} & 0 \\ b_1 a_1 & \dots & b_{n-1} a_{n-1} & 0 \\ \vdots & \ddots & \vdots \\ b_1 a_1^{k-2} & \dots & b_{n-1} a_{n-1}^{k-2} & 0 \\ b_1 a_1^{k-1} & \dots & b_{n-1} a_{n-1}^{k-1} & 0 \\ \end{pmatrix}$$

if $a_n = \infty$.

・ロト・四ト・ヨト・ヨー のへで

GENERALIZED REED-SOLOMON CODES (GRS CODES)

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECF

MOTIVATION

OUR GOAL

PROPOSITION GRS

We have

$$\operatorname{GRS}_k(\mathbf{a},\mathbf{b})^{\perp} = \operatorname{GRS}_{n-k}(\mathbf{a},\mathbf{s})$$

where **s** = $(s_1, ..., s_n)$ with $s_i^{-1} = b_i \prod_{i \neq i} (a_i - a_i)$.

PROPOSITION

If $2 \le k \le n-2$ then a representation of a GRS code is **unique** up to a fractional map of the projective line that induces an automorphism of the code, i.e.

- → Different values of **a** and **b** gives rise to the same GRS code.
- → But... the pair (a, b) is unique up to the action of fractional transformations.

NOTATION

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATION

OUR GOAL

- → For all $\mathbf{a}, \mathbf{b} \in \mathbb{F}_{q}^{n}$ we define:
- **Star Multiplication:** $\mathbf{a} * \mathbf{b} = (a_1 b_1, \dots, a_n b_n) \in \mathbb{F}_q^n$.
- **Standard Inner Multiplication:** $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$.
- → For all subsets A, $B \subseteq \mathbb{F}_q^n$ we define:
- $A * B = \{ a * b \mid a \in A \text{ and } b \in B \}.$
- $A \perp B \iff \mathbf{a} \cdot \mathbf{b} = 0 \quad \forall \mathbf{a} \in A \text{ and } \mathbf{b} \in B.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

ERROR-CORRECTING PAIRS (ECP)

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECF

MOTIVATION

OUR GOAL

ERROR-CORRECTING PAIRS (ECP)

Let C be an \mathbb{F}_q linear code of length n. The pair (A, B) of \mathbb{F}_{qN} -linear codes of length n is a *t*-ECP for C over \mathbb{F}_{qN} if the following properties hold:

E.1 $(A * B) \perp C$. E.2 k(A) > t. E.3 $d(B^{\perp}) > t$. E.4 d(A) + d(C) > n.

An [n, k] code which has a *t*-ECP over \mathbb{F}_{qN} has a decoding algorithm with complexity $\mathcal{O}\left((nN)^3\right)$.

R. Pellikaan

On decoding by error location and dependent sets of error positions. Discrete Math., 106–107: 369–381 (1992).

R. Kötter.

A unified description of an error locating procedure for linear codes.

In Proceedings of Algebraic and Combinatorial Coding Theory, 113–117. Voneshta Voda (1992).

EXAMPLES OF THE EXISTENCE OF ECP

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATION

OUR GOAL

1. GRS CODES

Let

 $A = \operatorname{GRS}_{t+1}(\mathbf{a}, \mathbf{b}_1), \quad B = \operatorname{GRS}_t(\mathbf{a}, \mathbf{b}_2) \quad \text{and} \quad \mathcal{C} = \operatorname{GRS}_{2t}(\mathbf{a}, \mathbf{b}_1 * \mathbf{b}_2)^{\perp}$ then (A, B) is a *t*-ECP for C.

Conversely, let $C = GRS_k(\mathbf{a}, \mathbf{b})$ then

 $A = GRS_{t+1}(\mathbf{a}, \mathbf{b}')$ and $B = GRS_t(\mathbf{a}, \mathbf{1})$

is a *t*-ECP for C where $t = \left\lfloor \frac{n-k}{2} \right\rfloor$ and $\mathbf{b}' \in (\mathbb{F}_q \setminus \{0\})^n$ verifies that $\operatorname{GRS}_k(\mathbf{a}, \mathbf{b})^\perp = \operatorname{GRS}_{n-k}(\mathbf{a}, \mathbf{b}').$

2. Cyclic-codes

I. Duursma Decoding codes from curves and cyclic codes. Ph.D thesis, Eindhoven University of Technology (1993) I. Duursma, R. Kötter. Error-locating pairs for cyclic codes.

Error-locating pairs for cyclic codes. IEEE Trans. Inform. Theory, Vol.40, 1108–1121 (1994)

R. Kötter.

On algebraic decoding of algebraic-geometric and cyclic codes. Ph.D thesis, Linköping University of Technology (1996).

EXAMPLES OF THE EXISTENCE OF ECP

3. SUBCODES OF A GRS CODE

Let C be a subcode of a GRS code.

→ This code has an ECP by Example1 which is also an ECP for C.

4. Algebraic Geometry codes

An AG code on a curve of genus g with designed minimum distance d^* :

- → Has a *t*-ECP over \mathbb{F}_q with $t = \left| \frac{d^* 1 g}{2} \right|$.
- → If *e* is sufficiently large, then there exists a *t*-ECP over \mathbb{F}_{q^e} with $t = \left| \frac{d^* 1}{2} \right|$

R Pellikaan

On decoding by error location and dependent sets of error positions. Discrete Math., 106-107: 369-381 (1992).

R Pellikaan

On the existence of error-correcting pairs. Statistical Planning and Inference, Vol.51,

5. GOPPA CODES

A Goppa code associated to a Goppa polynomial of degree r can be viewed as an alternant code, i.e. a subfield subcode of a GRS code of dimension r.

```
→ They have an | ½ |-ECP.
```

PROPERTIES OF ECP

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

PROPERTY 1

```
INTRODUCTION TO CODING
```

MDS CODES

GRS CODES

ECF

MOTIVATION

OUR GOAL

If C is an MDS code and has a *t*-ECP (A, B) then without loss of generality we may assume that:

- → A is an MDS code with parameters [n, t + 1, n t].
- → *B* is an MDS code with parameters [n, t, n t + 1].

PROPERTY 2

If the property E.4 is replaced by the following statements:

E.5 $d(A^{\perp}) > 1$ i.e. A is non-degenerated code.

```
E.6 d(A) + 2t > n.
```

Then (A, B) is a *t*-ECP for C and $d(C) \ge 2t + 1$.

R. Pellikaan

On decoding by error location and dependent sets of error positions. Discrete Math., 106–107: 369–381 (1992).

R. Pellikaan

On the existence of error-correcting pairs. Statistical Planning and Inference, Vol.51, 229–242. (1996).

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

MOTIVATION: CODE-BASED CRYPTOGRAPHY IS AN INTERESTING CANDIDATE FOR POST-QUATUM CRYPTOGRAPHY

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

- MDS CODES
- GRS CODES
- ECP
- MOTIVATION
- OUR GOAL

TWO KEYS:

- Private Key: Known only by the recipient.
- Public Key: Available to anyone.

MOST PKC ARE BASED ON NUMBER-THEORETIC PROBLEMS

→ Quatum computers will break the most popular PKCs: RSA, DSA, ECDSA, ECC, HECC, ... can be attacked in polynomial time using Shor's algorithm

GOOD NEWS: POST-QUATUM CRYPTOGRAPHY

- Hash-based cryptography,
- Code-based cryptography,
- Lattice-based cryptography,
- Multivariate-quadratic-equation cryptography

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ



Springer, 2009.

MOTIVATION

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATION

OUR GOAL

"At the heart of any public-key cryptosystem is a one-way function - a function y = f(x) that is easy to evaluate but for which is computationally infeasible (one hopes) to find the inverse $x = f^{-1}(y)$ ".

N. Koblitz, A. Menezes.

The brave new world of bodacious assumptions in cryptography. Notices Amer. Math. Soc. 57(3), 357-365 (2010).

Let C_t the class of linear codes over \mathbb{F}_q that have a *t*-ECP over an extension of \mathbb{F}_q .

- → This family have an efficient decoding algorithm ⇒ they are appropriate for code-based cryptography.
- → Most families of codes used in code-based cryptography belongs to C_t .

(Like GRS codes, Goppa codes, AG codes ...)

→ We proposed to use the subclass of C_t formed by those linear codes C whose error correcting pair is not easily reconstructed from C, i.e. we consider the following one way function:

$$\mathbf{x} = (A, B) \quad \longmapsto \quad \mathbf{y} = A * B,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

where (A, B) is a t-ECP.

MOTIVATION: THE CLASS OF GRS CODES WAS PROPOSED FOR CODE-BASED PKC BY NIEDERREITER

- → Sidelnikov-Shestakov in 1992 introduced an algorithm that breaks the original Niederreiter cryptosystem in polynomial time.
- → Berger and Loidreau in 2005 propose another version of the Niederreiter scheme designed to resist the Sidelnikov-Shestakov attack.
 - → Main idea: work with subcodes of the original GRS code.
 - Attacks:
 - Wieschebrink:
 - Presents the first feasible attack to the Berger-Loidreau cryptosystem but is impractical for small subcodes.
 - Notes that if the square code of a subcode of a GRS code of parameters [n, k] is itself a GRS code of dimension 2k - 1 then we can apply Sidelnikov-Shestakov attack
 - M-Mártinez-Pellikaan: Give a characterization of the possible parameters that should be used to avoid attacks on the Berger-Loidreau cryptosystem.

T. Berger and P. Loidreau.

How to mask the structure of codes for a cryptographic use.

Designs, Codes and Cryptography, 35: 63-79,

I. Márquez-Corbella, E. Martínez-Moro and

R. Pellikaan.

The non-gap sequence of a subcode of a generalized Reed-Solomon code.

Proceedings of the Seventh International Workshop on Coding and Cryptography, April 11-15, Paris, France, 183-193, 2011.

C. Wieschebrink.

An attack on the modified Niederreiter encryption scheme.

In PKC 2006, Lecture Notes in Computer Science, volume 3958, 14-26, Berlin, 2006. Springer.

C. Wieschebrink.

Cryptoanalysis of the Niederreiter public key scheme based on GRS subcodes.

In Post-Quantum Cryptography, Lecture Notes in Computer Science, volume 6061, 6-72, Berlin, 2010. Springer.

V. M. Sidelnikov and S. O. Shestakov.

On insecurity of cryptosystems based on generalized Reed-Solomon codes. ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Discrete Mathematics and Applications.

OUR GOAL

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR	
	THEOREM:
	If C is an MDS code over \mathbb{F}_q of minimum distance $d(C) = 2t + 1$ and with a
OUR GOAL	<i>t</i> -ECP over a finite extension of \mathbb{F}_q then \mathcal{C} is a GRS code.

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

WHAT DO WE HAVE?

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATION

OUR GOAL

In the special cases $k(C) = \{0, 1, n(C) - 1, n(C)\}$ the hypothesis of having a *t*-ECP is not a necessary condition.

- The [2t, 0, 2t + 1]-code is the trivial code $C_1 = \{\mathbf{0}\}$ which is MDS and $C_1 = \text{GRS}_0(\mathbf{a}, \mathbf{b})$ for every $\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^{2t}$ that satisfy the right conditions of GRS codes.
- → The [2t, 2t, 1]-code is C¹₁ = F^{2t}_q = GRS_{2t}(**a**, **b**') which is MDS, where **b**' take the form described in Proposition GRS.
- The [2t, 1, 2t]-code is a code C₂ generated by a word b ∈ (F_q \ {0})^{2t}, i.e. C₂ = GRS₁(a, b) for every a ∈ F^{2t}_q that satisfy the right conditions of GRS codes.
- → If k(C) = n 1 then its dual C[⊥] belongs to the previous case ⇒ C is a GRS code (using Proposition GRS).

Therefore we need to prove the result for $2 \le k(C) \le n(C) - 2$.

- When t = 1, it is easy to prove that C is a GRS code.
- The case t = 2 was already proved by Pellikaan.

R. Pellikaan

On the existence of error-correcting pairs. Statistical Planning and Inference, Vol.51, 229–242. (1996).

• For $t \ge 2$... Work in progress!!

→ If C has a t-ECP then the code obtained from C by puncturing twice at any pair of coordinates has a (t - 1)-ECP.

THANK YOU FOR YOUR ATTENTION!

A CHARACTERIZATION OF MDS CODES THAT HAVE AN ERROR CORRECTING PAIR

INTRODUCTION TO CODING THEORY

MDS CODES

GRS CODES

ECP

MOTIVATIO

OUR GOAL

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 = のへで