On bent and hyper-bent functions via Dillon-like

exponents

Sihem Mesnager'and Jean-Pierre Flori >

'University of Paris VIII and University of Paris X!
Department of mathematics,
LAGA (Laboratory Analysis, Geometry and Application),
France
2 ANSSI (Agence nationale de la sécurité des systemes
d’'information), France
Code-based Cryptography Workshop 2012
Lyngby, Copenhagen, May 9, 2012

1/21



@ Background on bent functions and hyper-bent functions

© New results on bent and hyper-bent functions with multiple
trace terms via Dillon-like exponents

© Conclusion

2/21



Background on Boolean functions : representation

f : 3 — IF, an n-variable Boolean function.

= We identify the vectorspace I with the Galois field Fa.

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F,. has a
(unique) trace expansion called its polynomial form :

V€ Py, f(x) =Y T0(x)+e(l+x77"), a€Fpy
JjeT,

\

DEFINITION (ABSOLUTE TRACE OVER FF,)

Let k be a positive integer. For x € Fy, the (absolute) trace 7r(x) of x over F,
is defined by :

k—1
Tr’f(x) o= szl :x+x2+x22 +...+x2k_] G]FZ
i=0
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Background on Boolean functions : representation

Let n be a positive integer. Every Boolean function f defined on F,. has a
(unique) trace expansion called its polynomial form :

Vx € Fou,  f(x) = Z Tr‘f(j) (ai@) + (1 +x*7Y), a5 € Fp
JEL

@ T, is the set obtained by choosing one element in each cyclotomic class
of 2 modulo 2" — 1,

@ o(j) is the size of the cyclotomic coset containing j (that is, o(j) is the
smallest positive integer such that j2°V) = j (mod 2" — 1)),

@ ¢ = wi(f) modulo 2.

Recall :

DEFINITION (THE HAMMING WEIGHT OF A BOOLEAN FUNCTION)

wi(f) = #supp(f) := #{x € F

f) =1}




Bent and "hyper-bent "Boolean functions

f :F» — IF, a Boolean function.

@ General upper bound on the nonlinearity of any n-variable Boolean
function : nl(f) < 2"~ — 25!

DEFINITION (BENT FUNCTION

f:Fy — T, (n even) is said to be a bent function if nl(f) = 2"~ — 25!

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

Xrw)= ) (F1yOFHE) -y e Fy,

xEFon

where "Tr}" is the absolute trace function on Fa..

@ A main characterization of bentness :
(fisbent) <= yr(w) = +22, Vw € Fy

Notation : in this talk we use sometime x(x) := (—1)*
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Bent and "hyper-bent "Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION

f :Fu — F, (n even) is said to be a hyper-bent if the function x — f(x') is
bent , for every integer i co-prime to 2" — 1.

@ (f is hyper-bent) = (f is bent)

@ Hyper-bent functions have properties still stronger than the well-known
bent functions which were already studied by Dillon [Dillon 1974] and
Rothaus [Rothaus 1976] more than three decades ago. They are
interesting in cryptography, coding theory and from a combinatorial point
of view.

@ Hyper-bent functions were initially proposed by Golomb and Gong
[Golomb-Gong 1999] as a component of S-boxes to ensure the security
of symmetric cryptosystems.

@ Hyper-bent functions are rare and whose classification is still elusive.

= Therefore, not only their characterization, but also their generation are
challenging problems.
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Bent and "hyper-bent "Boolean functions

For any bent/hyper-bent Boolean function f defined over Fy. :

@ Polynomial form :

Ve Fa, f(0) =Y T4 (aw) a5 €Ty
jeT,

— T, is the set obtained by choosing one element in each cyclotomic
class of 2 modulo 2" — 1,
— o(j) is the size of the cyclotomic coset containing j,

PROBLEM (HARD)

Characterize classes of bent / hyper-bent functions in polynomial form, by
giving explicitly the coefficients a;.
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Kloosterman sums with the value 0 and 4

(Hyper)-bentness can be c]haracterized by means of Kloosterman sums :
Ka(a) := 3 ep,, (= 1))
@ Itis known since 1974 that the zeros of Kloosterman sums give rise to
(hyper)-bent functions.
[Dillon 1974] (r = 1)[Charpin-Gong 2008] (r such that gcd(r,2" +1) = 1) :
Let n =2m. Let a € F3,
f;l(r) : an — Fz
X — Tr{’(ax’(zm_l))
then : £, is (hyper)-bent if and only if K,,(a) = 0.
@ In 2009 we have shown that the value 4 of Kloosterman sums leads to
constructions of (hyper-)bent functions.
[Mesnager 2009] : Let n = 2m (m odd). Let a € F}, and b € F}.

0 P —
x — T (ax@ V) + T} (bxza;l) ;ged(r,2" +1) =1

then :fcffl,) is (hyper)-bent if and only if K,,(a) = 4.
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(Hyper-)bent functions with multiple trace terms via Dillon exponents

e [Charpin-Gong 2008] have studied the hyper-bentness of Boolean functions
which are sum of several Dillon-like monomial functions :

Let n = 2m. Let E’ be a set of representatives of the cyclotomic cosets modulo
2™ + 1 for which each coset has the maximal size n. Let f, be the function
defined on F,: by

Ja,(x) = E T'Jll(arxr(zm_l)) (1)
rer
where a, € Fon and R C E/.

= when r is co-prime with 2" + 1, the functions f,, are the sum of several
Dillon monomial functions.

= characterization of hyper-bent functions of the form (1) has been given
by means of Dikson polynomials.

The Dickson polynomials D, (X) € F,[X] is defined by

L7] g
Dr(X) = - .<rfl>Xr_2i’ r=23,---

L — i
i=0




(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

e In 2010, we have extended such an approach to treat Charpin-Gong like
function with an additional trace term over F; :
THEOREM ( )

Let n = 2m with m odd. Let b € IF; and 5 be a primitive element of F,. Let £,
defined on Fy. by

Sarp(x ZTI" R ACY )+Tr2(bx 3 )

reR

where a, € Fy. Let g,, defined on Fyn by Y-, Tr'(a.D,(x)), where D,(x) is
the Dickson polynomial of degree r.

Q /... is (hyper-Joent if and only if, 5, ey, eyt X (80, (D3(x))) = =2
equivalently, >° . . X(TrT(x—l) + g4,(D3 (x))) = 2" —2wit(g,, o D3) + 4.
Q /... is (hyper-)bent if and only if,
23 ers TP (x— )= 1X(gar(D3(x))) 32xemz*m,m(rl):1 x(ga,(x)) =2.

om s
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

¢ In 2010, we have extended such an approach to treat Charpin-Gong like
function with an additional trace term over F4 with m odd (i.e. m =1 (mod 2)).
¢ Adopting the approach developed by Mesnager [Mesnager 2010], Wang et
al. [Wang-Tang-Qi-Yang-Xu 2011] studied in late 2011 the following family
with an additional trace term on Fy¢ :

fap(x Z:Trl a,x"¢ )+ Trf (bxznT_])

rer

where some further restrictions lie on the coefficients a,, the coefficient 4 is in
Fis and m must verify m = 2 (mod 4).

= Both these approaches are quite similar and crucially depend on the fact
that the hypothesis made on m implies that 3 or 5 do not only divide
2" — 1, but also 2™ + 1.
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Here, we show how such approaches can be extended to an infinity of
different trace terms, covering all the possible Dillon-like exponents. In
particular, we show that they are valid for an infinite number of other
denominators, e.g 9, 11, 13,17, 33 etc. To this end, we consider a function of
the general form

Sap(x ZTr" ax )+ Tr, (bx*‘(zm_'))
rer
where
@ n =2m s an even integer,

R is a set of representatives of the cyclotomic classes modulo 2" + 1,
the coefficients a, are in Fon,
s divides 2" + 1, i.e s(2 — 1) is a Dillon-like exponent. Set r = Z-tL,

t=o0(s(2" — 1)), i.e t is the size of the cyclotomic coset of s modulo
2" 41,

the coefficient & is in Fy.

Our objective is to show how we can treat the property of
hyper-bentness in this general case. 12/21



(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

The following partial exponential sums are a classical tool to study
hyper-bentness.

DEFINITION

Let U= {uc T |u* ' =1}. Letf: Fo — F, be a Boolean function. We
define A(f) as :

Af) =) xr(w)

uel

THEOREM
Let fu5(x) = 3, cp Tri(a,x ' =V) + Tr (bx*@"— D). Then

| A

fap is (hyper)-bent if and only if A(f, ) = 1.

A
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Let
e V={vel, |V =1}
@ U= {ucF; |u**' =1} and (is a generator of U,
@ W={webF; |w =1}

The set U can be decomposed as U = |J[_, ¢'V = i) ¢'W

Letf,(x) = 3, g Tri(a, X —V) and £, (x) = 3,5 Tri(a,x"). For i € Z, define
S;(a) and S;(a) to be the partial exponential sums :

=> X (fu(¢v) and Si(a) =Y x (F.(¢V)

vev vev

Note that ¢ is of order 7 so that S;(a) and S;(a) only depend on the value of i
modulo 7 := =L,
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

DEFINITION

Letfo(x) = 3, e T (" =V) and £, (x) = 3, ., Tri (a,x"). For i € Z, define

Si(a) and S;(a) to be the partial exponential sums

Zx(f Cv andS Zx(f C’

vev vev

THEOREM

| \

® 37 Si(a) = 14 2Ti(g.) where Ty (f) = 2 e {xebm|ty(1 =1} X (*) @nd ga
Tri'a.D,(x).

be the Boolean function defined on Fo» as g.(x) = >,z

@ For0<i<rt—1,then Si(a) =S_, (mod ) (@)-
@ For ris co-prime with 27 + 1 then S_7°' S;(a) = 1 — K, (a)

@ For [/ be a divisor of 7 and Iet k the integer such that k = 7/, then
3oico Sula) = g Su(a) = 1 (1+271(ga 0 D))

@ Let k = m/l. Suppose that the coefficients a, lie in Fy and that 2/ = j

(mod 7), where j is a k-th root of —1 modulo 7. Then S;(a) = S;;(a)
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

w We express A(f,,) by means of the partial exponential sums S;(a) :

we deduce :

Afup) = x (Trib) So(a) + D (x (Trb€) + x (TribE ™)) Si(a)

i=1

Recall that
fap 1s (hyper)-bent if and only if A(f, ) = 1.

It is a difficult problem to deduce a completely general characterization of
hyper-bentness in terms of complete exponential sums from our results.
Nevertheless, several powerful applications of our results, valid for infinite
families of Boolean functions can be described.
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Building infinite families of extension degrees

@ In the first approach, we set an extension degree m and studied the
corresponding exponents s dividing 2" + 1.

@ It is however customary to go the other way around, i.e. set an exponent
s, or a given form of exponents, which is valid for an infinite family of
extension degrees m and devise characterizations valid for this infinity of
extension degrees.

= We provide the link between these two approaches.
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Building infinite families of extension degrees

We fix a value for = and devise the extension degrees m for which 7 divides
2" 4 1.

iz \We have study the values of 7 for which an infinite number of such
extension degrees m exists

@ case of an odd prime number :7 = p ( p prime).
@ case of a prime power : 7 = p* ( p prime).

e case of an odd co IIDOSite number : 7 = pkl o ‘pk' isa prOdUCt ofr >2
1 r =
distinct prill e powers.
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Application :
@ The case 7 = 3 : we recover the characterizations of hyper-bentness of
functions of the family of [Mesnager 2010]
Sarp(x z:Tr1 (ax " V) + T2 (bx 3]) beFy,m=1 (mod2)
ré€RrR
@ The case 7 = 5 : we recover the characterizations of hyper-bentness of
functions of the family of [Wang et al. 2011]
Sarp(x z:Tr1 ax" " D) 4 T (bx 5]) beTF,m=2 (mod4)
r€R
@ The case 7 =9 : we characterize the hyper-bentness for a new family
Ja, b( ZT;’l a,x"? *1))+Trl(bx 91) beFz,m=3 (mod6)
réerR
@ The case 7 = 11 : we characterize the hyper-bentness for a new family
fa(x) =Y Tri(a® 1) + Trl0(bx™ ), b € Fyo,m=5 (mod 10)
rér
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Application :

@ The case 7 = 13 : we characterize the hyper-bentness for a new family

Ja b ZTr" (a,x @Dy 4 Tr}z(bx E ) beF,,m=6 (mod 12)

reRr

@ The case 7 = 17 : we characterize the hyper-bentness for a new family

Sarp(x Z T (a,x"¢ )+ T8 (bx 0 ) beFys,m=4 (mod8)
rer

@ The case 7 = 33 : we characterize the hyper-bentness for a new family

fap(x) =Y T (a1 + Trl0(bx™="),b € Fy,m=5 (mod 10)

rer
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Conclusion :

@ We study hyper-bent functions with multiple trace terms (including
binomial functions) via Dillon-like exponents :

Sap(x Z T (a,x'¢ )+ T (bx*@" 1)
reR

@ We show how the approach developed by Mesnager to extend the
Charpin—-Gong family (and subsequently slightly extended by Wang et
al) fits in a much more general setting.

@ We tackle the problem of devising infinite families of extension degrees
for which a given exponent is valid and apply these results not only to
reprove straightforwardly the results of Mesnager and Wang et. al, but
also to characterize the hyper-bentness of several new infinite classes of
Boolean functions.

@ We also propose a reformulation of such characterizations in terms of
hyperelliptic curves and use it to actually build hyper-bent functions.
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