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Background on Boolean functions : representation

f : Fn
2 → F2 an n-variable Boolean function.

+ We identify the vectorspace Fn
2 with the Galois field F2n

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

DEFINITION (ABSOLUTE TRACE OVER F2 )

Let k be a positive integer. For x ∈ F2k , the (absolute) trace Trk
1(x) of x over F2

is defined by :

Trk
1(x) :=

k−1∑
i=0

x2i
= x + x2 + x22

+ · · ·+ x2k−1
∈ F2
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

Γn is the set obtained by choosing one element in each cyclotomic class
of 2 modulo 2n − 1,

o(j) is the size of the cyclotomic coset containing j (that is, o(j) is the
smallest positive integer such that j2o(j) ≡ j (mod 2n − 1)),

ε = wt(f ) modulo 2.

Recall :

DEFINITION (THE HAMMING WEIGHT OF A BOOLEAN FUNCTION)

wt(f ) = #supp(f ) := #{x ∈ F2n | f (x) = 1}
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Bent and "hyper-bent "Boolean functions

f : F2n → F2 a Boolean function.

General upper bound on the nonlinearity of any n-variable Boolean
function : nl(f ) ≤ 2n−1 − 2

n
2−1

DEFINITION (BENT FUNCTION [ROTHAUS 1976])

f : F2n → F2 (n even) is said to be a bent function if nl(f ) = 2n−1 − 2
n
2−1

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (ω) =
∑

x∈F2n

(−1)f (x)+Trn
1(xω), ω ∈ F2n

where "Trn
1" is the absolute trace function on F2n .

A main characterization of bentness :

(f is bent ) ⇐⇒ χ̂f (ω) = ±2
n
2 , ∀ω ∈ F2n

Notation : in this talk we use sometime χ(∗) := (−1)∗
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Bent and "hyper-bent "Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 2001])

f : F2n → F2 (n even) is said to be a hyper-bent if the function x 7→ f (xi) is
bent , for every integer i co-prime to 2n − 1.

(f is hyper-bent)⇒ (f is bent)

Hyper-bent functions have properties still stronger than the well-known
bent functions which were already studied by Dillon [Dillon 1974] and
Rothaus [Rothaus 1976] more than three decades ago. They are
interesting in cryptography, coding theory and from a combinatorial point
of view.

Hyper-bent functions were initially proposed by Golomb and Gong
[Golomb-Gong 1999] as a component of S-boxes to ensure the security
of symmetric cryptosystems.

Hyper-bent functions are rare and whose classification is still elusive.

+ Therefore, not only their characterization, but also their generation are
challenging problems.
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Bent and "hyper-bent "Boolean functions

For any bent/hyper-bent Boolean function f defined over F2n :

Polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) , aj ∈ F2o(j)

– Γn is the set obtained by choosing one element in each cyclotomic
class of 2 modulo 2n − 1,

– o(j) is the size of the cyclotomic coset containing j,

PROBLEM (HARD)

Characterize classes of bent / hyper-bent functions in polynomial form, by
giving explicitly the coefficients aj.
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Kloosterman sums with the value 0 and 4

(Hyper)-bentness can be characterized by means of Kloosterman sums :
Kn(a) :=

∑
x∈F2n (−1)Trn

1(ax+ 1
x )

It is known since 1974 that the zeros of Kloosterman sums give rise to
(hyper)-bent functions.
[Dillon 1974] (r = 1)[Charpin-Gong 2008] (r such that gcd(r, 2m + 1) = 1) :
Let n = 2m. Let a ∈ F?2m

f (r)
a : F2n −→ F2

x 7−→ Trn
1(axr(2m−1))

then : fa is (hyper)-bent if and only if Km(a) = 0.

In 2009 we have shown that the value 4 of Kloosterman sums leads to
constructions of (hyper-)bent functions.
[Mesnager 2009] : Let n = 2m (m odd). Let a ∈ F?2m and b ∈ F?4 .

f (r)
a,b : F2n −→ F2

x 7−→ Trn
1

(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
; gcd(r, 2m + 1) = 1

then : f (r)
a,b is (hyper)-bent if and only if Km(a) = 4.
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(Hyper-)bent functions with multiple trace terms via Dillon exponents

• [Charpin-Gong 2008] have studied the hyper-bentness of Boolean functions
which are sum of several Dillon-like monomial functions :
Let n = 2m. Let E′ be a set of representatives of the cyclotomic cosets modulo
2m + 1 for which each coset has the maximal size n. Let far be the function
defined on F2n by

far (x) =
∑
r∈R

Trn
1(arxr(2m−1)) (1)

where ar ∈ F2m and R ⊆ E′.

+ when r is co-prime with 2m + 1, the functions far are the sum of several
Dillon monomial functions.

+ characterization of hyper-bent functions of the form (1) has been given
by means of Dikson polynomials.

DEFINITION

The Dickson polynomials Dr(X) ∈ F2 [X] is defined by

Dr(X) =

b r
2 c∑

i=0

r
r − i

(
r − i

i

)
Xr−2i, r = 2, 3, · · ·
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

• In 2010, we have extended such an approach to treat Charpin-Gong like
function with an additional trace term over F4 :

THEOREM ([MESNAGER 2010])

Let n = 2m with m odd. Let b ∈ F?4 and β be a primitive element of F4 . Let far,b

defined on F2n by

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr2

1(bx
2n−1

3 )

where ar ∈ F2m . Let gar defined on F2m by
∑

r∈R Trm
1 (arDr(x)), where Dr(x) is

the Dickson polynomial of degree r.

1 far,β is (hyper-)bent if and only if,
∑

x∈F?2m ,Trm
1 (x−1)=1 χ

(
gar (D3(x))

)
= −2;

equivalently,
∑

x∈F2m χ
(

Trm
1 (x−1) + gar (D3(x))

)
= 2m − 2wt(gar ◦ D3) + 4.

2 far,1 is (hyper-)bent if and only if,
2
∑

x∈F?2m ,Trm
1 (x−1)=1 χ

(
gar (D3(x))

)
− 3

∑
x∈F?2m ,Trm

1 (x−1)=1 χ
(

gar (x)
)

= 2.
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

• In 2010, we have extended such an approach to treat Charpin-Gong like
function with an additional trace term over F4 with m odd (i.e. m ≡ 1 (mod 2)).
• Adopting the approach developed by Mesnager [Mesnager 2010], Wang et
al. [Wang-Tang-Qi-Yang-Xu 2011] studied in late 2011 the following family
with an additional trace term on F16 :

fa,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr4

1(bx
2n−1

5 )

where some further restrictions lie on the coefficients ar, the coefficient b is in
F16 and m must verify m ≡ 2 (mod 4).

+ Both these approaches are quite similar and crucially depend on the fact
that the hypothesis made on m implies that 3 or 5 do not only divide
2n − 1, but also 2m + 1.

11 / 21



(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Here, we show how such approaches can be extended to an infinity of
different trace terms, covering all the possible Dillon-like exponents. In
particular, we show that they are valid for an infinite number of other
denominators, e.g 9, 11, 13,17, 33 etc. To this end, we consider a function of
the general form

fa,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Trt

1(bxs(2m−1))

where

n = 2m is an even integer,

R is a set of representatives of the cyclotomic classes modulo 2m + 1,

the coefficients ar are in F2m ,

s divides 2m + 1, i.e s(2m − 1) is a Dillon-like exponent. Set τ = 2m+1
s .

t = o(s(2m − 1)), i.e t is the size of the cyclotomic coset of s modulo
2m + 1,

the coefficient b is in F2t .

+ Our objective is to show how we can treat the property of
hyper-bentness in this general case. 12 / 21



(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

The following partial exponential sums are a classical tool to study
hyper-bentness.

DEFINITION

Let U = {u ∈ F∗2n | u2m+1 = 1}. Let f : F2n → F2 be a Boolean function. We
define Λ(f ) as :

Λ(f ) =
∑
u∈U

χf (u)

THEOREM

Let fa,b(x) =
∑

r∈R Trn
1(arxr(2m−1)) + Trt

1(bxs(2m−1)). Then

fa,b is (hyper)-bent if and only if Λ(fa,b) = 1.
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Let

V = {v ∈ F∗2n | vs = 1},

U =
{

u ∈ F∗2n | u2m+1 = 1
}

and ζ is a generator of U,

W = {w ∈ F∗2n | wτ = 1}.

The set U can be decomposed as U =
⋃τ−1

i=0 ζ
iV =

⋃s−1
i=0 ζ

iW.

DEFINITION

Let fa(x) =
∑

r∈R Trn
1(arxr(2m−1)) and f a(x) =

∑
r∈R Trn

1(arxr). For i ∈ Z, define
Si(a) and Si(a) to be the partial exponential sums :

Si(a) =
∑
v∈V

χ
(
fa(ζ iv)

)
and Si(a) =

∑
v∈V

χ
(
f a(ζ iv)

)
.

Note that ζ is of order τ so that Si(a) and Si(a) only depend on the value of i
modulo τ := 2m+1

s .
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

DEFINITION

Let fa(x) =
∑

r∈R Trn
1(arxr(2m−1)) and f a(x) =

∑
r∈R Trn

1(arxr). For i ∈ Z, define
Si(a) and Si(a) to be the partial exponential sums

Si(a) =
∑
v∈V

χ
(
fa(ζ iv)

)
and Si(a) =

∑
v∈V

χ
(
f a(ζ iv)

)
.

THEOREM∑τ−1
i=0 Si(a) = 1 + 2T1(ga) where T1(f ) =

∑
x∈{x∈F2m |Trm

1 (1/x)=1} χf (x) and ga

be the Boolean function defined on F2m as ga(x) =
∑

r∈R Trm
1 arDr(x).

For 0 ≤ i ≤ τ − 1, then Si(a) = S−2i (mod τ)(a).

For r is co-prime with 2m + 1 then
∑τ−1

i=0 Si(a) = 1− Km(a)

For l be a divisor of τ and let k the integer such that k = τ/l, then∑k−1
i=0 Sil(a) =

∑k−1
i=0 Sil(a) = 1

l (1 + 2T1(ga ◦ Dl))

Let k = m/l. Suppose that the coefficients ar lie in F2l and that 2l ≡ j
(mod τ), where j is a k-th root of −1 modulo τ . Then Si(a) = Sij(a) 15 / 21



(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

+ We express Λ(fa,b) by means of the partial exponential sums Si(a) :

we deduce :

THEOREM

Λ(fa,b) = χ (Trt
1b) S0(a) +

τ−1
2∑

i=1

(
χ
(
Trt

1bξi)+ χ
(
Trt

1bξ−i)) Si(a)

Recall that
fa,b is (hyper)-bent if and only if Λ(fa,b) = 1.

REMARK

It is a difficult problem to deduce a completely general characterization of
hyper-bentness in terms of complete exponential sums from our results.
Nevertheless, several powerful applications of our results, valid for infinite
families of Boolean functions can be described.
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Building infinite families of extension degrees

In the first approach, we set an extension degree m and studied the
corresponding exponents s dividing 2m + 1.

It is however customary to go the other way around, i.e. set an exponent
s, or a given form of exponents, which is valid for an infinite family of
extension degrees m and devise characterizations valid for this infinity of
extension degrees.

+ We provide the link between these two approaches.
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Building infinite families of extension degrees

We fix a value for τ and devise the extension degrees m for which τ divides
2m + 1.

+ We have study the values of τ for which an infinite number of such
extension degrees m exists

1 case of an odd prime number :τ = p ( p prime).

2 case of a prime power : τ = pk ( p prime).

3 case of an odd composite number : τ = pk1
1 · · · pkr

r is a product of r ≥ 2
distinct prime powers.
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Application :

The case τ = 3 : we recover the characterizations of hyper-bentness of
functions of the family of [Mesnager 2010]

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr2

1(bx
2n−1

3 ), b ∈ F?4 ,m ≡ 1 (mod 2)

The case τ = 5 : we recover the characterizations of hyper-bentness of
functions of the family of [Wang et al. 2011]

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr4

1(bx
2n−1

5 ), b ∈ F?16 ,m ≡ 2 (mod 4)

The case τ = 9 : we characterize the hyper-bentness for a new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr6

1(bx
2n−1

9 ), b ∈ F?64 ,m ≡ 3 (mod 6)

The case τ = 11 : we characterize the hyper-bentness for a new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr10

1 (bx
2n−1

11 ), b ∈ F?210 ,m ≡ 5 (mod 10)
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(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Application :

The case τ = 13 : we characterize the hyper-bentness for a new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr12

1 (bx
2n−1

13 ), b ∈ F?212 ,m ≡ 6 (mod 12)

The case τ = 17 : we characterize the hyper-bentness for a new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr8

1(bx
2n−1

17 ), b ∈ F?28 ,m ≡ 4 (mod 8)

The case τ = 33 : we characterize the hyper-bentness for a new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr10

1 (bx
2n−1

33 ), b ∈ F?210 ,m ≡ 5 (mod 10)

20 / 21



Conclusion :

We study hyper-bent functions with multiple trace terms (including
binomial functions) via Dillon-like exponents :

fa,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Trt

1(bxs(2m−1))

We show how the approach developed by Mesnager to extend the
Charpin–Gong family (and subsequently slightly extended by Wang et
al) fits in a much more general setting.

We tackle the problem of devising infinite families of extension degrees
for which a given exponent is valid and apply these results not only to
reprove straightforwardly the results of Mesnager and Wang et. al, but
also to characterize the hyper-bentness of several new infinite classes of
Boolean functions.

We also propose a reformulation of such characterizations in terms of
hyperelliptic curves and use it to actually build hyper-bent functions.
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