On bent and hyper-bent functions via Dillon-like exponents

Sihem Mesnager¹ and Jean-Pierre Flori²

 ¹University of Paris VIII and University of Paris XIII Department of mathematics,
LAGA (Laboratory Analysis, Geometry and Application), France
² ANSSI (Agence nationale de la sécurité des systemes d'information), France
Code-based Cryptography Workshop 2012 Lyngby, Copenhagen, May 9, 2012

- Background on bent functions and hyper-bent functions
- New results on bent and hyper-bent functions with multiple trace terms via Dillon-like exponents
- Conclusion

Background on Boolean functions : representation

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ an *n*-variable Boolean function.

Solution We identify the vectorspace \mathbb{F}_2^n with the Galois field \mathbb{F}_{2^n}

DEFINITION

Let *n* be a positive integer. Every Boolean function *f* defined on \mathbb{F}_{2^n} has a (unique) trace expansion called its **polynomial form** :

$$\forall x \in \mathbb{F}_{2^n}, \quad f(x) = \sum_{j \in \Gamma_n} Tr_1^{o(j)}(a_j x^j) + \epsilon(1 + x^{2^n - 1}), \quad a_j \in \mathbb{F}_{2^{o(j)}}$$

DEFINITION (ABSOLUTE TRACE OVER \mathbb{F}_2)

Let *k* be a positive integer. For $x \in \mathbb{F}_{2^k}$, the (absolute) trace $Tr_1^k(x)$ of *x* over \mathbb{F}_2 is defined by :

$$Tr_1^k(x) := \sum_{i=0}^{k-1} x^{2^i} = x + x^2 + x^{2^2} + \dots + x^{2^{k-1}} \in \mathbb{F}_2$$

DEFINITION

Let *n* be a positive integer. Every Boolean function *f* defined on \mathbb{F}_{2^n} has a (unique) trace expansion called its **polynomial form** :

$$\forall x \in \mathbb{F}_{2^n}, \quad f(x) = \sum_{j \in \Gamma_n} Tr_1^{o(j)}(a_j x^j) + \epsilon(1 + x^{2^n - 1}), \quad a_j \in \mathbb{F}_{2^{o(j)}}$$

- Γ_n is the set obtained by choosing one element in each cyclotomic class of 2 modulo 2ⁿ 1,
- *o*(*j*) is the size of the cyclotomic coset containing *j* (that is, *o*(*j*) is the smallest positive integer such that *j*2^{*o*(*j*)} ≡ *j* (mod 2^{*n*} − 1)),

•
$$\epsilon = wt(f) \mod 2$$
.

Recall :

DEFINITION (THE HAMMING WEIGHT OF A BOOLEAN FUNCTION)

$$wt(f) = \#supp(f) := \#\{x \in \mathbb{F}_{2^n} \mid f(x) = 1\}$$

1/2

Bent and "hyper-bent "Boolean functions

- $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ a Boolean function.
 - General upper bound on the nonlinearity of any *n*-variable Boolean function : $nl(f) \le 2^{n-1} 2^{\frac{n}{2}-1}$

DEFINITION (BENT FUNCTION [ROTHAUS 1976])

 $f: \mathbb{F}_{2^n} \to \mathbb{F}_2$ (*n* even) is said to be a bent function if $nl(f) = 2^{n-1} - 2^{\frac{n}{2}-1}$

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

$$\widehat{\chi_f}(\omega) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + Tr_1^n(x\omega)}, \quad \omega \in \mathbb{F}_{2^n}$$

where " Tr_1^n " is the absolute trace function on \mathbb{F}_{2^n} .

• A main characterization of bentness :

$$(f \text{ is bent }) \iff \widehat{\chi_f}(\omega) = \pm 2^{\frac{n}{2}}, \quad \forall \omega \in \mathbb{F}_{2^n}$$

Notation : in this talk we use sometime $\chi(*):=(-1)^*_{control}$, we use sometime \chi(*):=(-1)^*_{control} , w

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 2001])

 $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ (*n* even) is said to be a hyper-bent if the function $x \mapsto f(x^i)$ is bent, for every integer *i* co-prime to $2^n - 1$.

• (*f* is hyper-bent) \Rightarrow (*f* is bent)

- Hyper-bent functions have properties still stronger than the well-known bent functions which were already studied by Dillon [Dillon 1974] and Rothaus [Rothaus 1976] more than three decades ago. They are interesting in cryptography, coding theory and from a combinatorial point of view.
- Hyper-bent functions were initially proposed by Golomb and Gong [Golomb-Gong 1999] as a component of S-boxes to ensure the security of symmetric cryptosystems.
- Hyper-bent functions are rare and whose classification is still elusive.
- Therefore, not only their characterization, but also their generation are challenging problems.

For any bent/hyper-bent Boolean function f defined over \mathbb{F}_{2^n} :

• Polynomial form :

$$\forall x \in \mathbb{F}_{2^n}, \quad f(x) = \sum_{j \in \Gamma_n} Tr_1^{o(j)}(a_j x^j) \quad , a_j \in \mathbb{F}_{2^{o(j)}}$$

- Γ_n is the set obtained by choosing one element in each cyclotomic class of 2 modulo 2ⁿ 1,
- o(j) is the size of the cyclotomic coset containing *j*,

PROBLEM (HARD)

Characterize classes of bent / hyper-bent functions in polynomial form, by giving explicitly the coefficients a_j .

(Hyper)-bentness can be characterized by means of Kloosterman sums : $K_n(a) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{T_1^n(ax + \frac{1}{x})}$

 It is known since 1974 that the zeros of Kloosterman sums give rise to (hyper)-bent functions.

[Dillon 1974] (r = 1)[Charpin-Gong 2008] $(r \text{ such that } gcd(r, 2^m + 1) = 1)$: Let n = 2m. Let $a \in \mathbb{F}_{2^m}^*$

$$\begin{array}{rccc} f_a^{(r)} & : & \mathbb{F}_{2^n} & \longrightarrow & \mathbb{F}_2 \\ & x & \longmapsto & Tr_1^n(ax^{r(2^m-1)}) \end{array}$$

then : f_a is (hyper)-bent if and only if $K_m(a) = 0$.

 In 2009 we have shown that the value 4 of Kloosterman sums leads to constructions of (hyper-)bent functions.

[Mesnager 2009] : Let n = 2m (*m* odd). Let $a \in \mathbb{F}_{2^m}^{\star}$ and $b \in \mathbb{F}_4^{\star}$.

$$\begin{array}{rcl} f_{a,b}^{(r)} & : & \mathbb{F}_{2^n} & \longrightarrow & \mathbb{F}_2 \\ & x & \longmapsto & Tr_1^n\left(ax^{r(2^m-1)}\right) + Tr_1^2\left(bx^{\frac{2^n-1}{3}}\right); gcd(r,2^m+1) = 1 \end{array}$$

then : $f_{a,b}^{(r)}$ is (hyper)-bent if and only if $K_m(a) = 4$.

(Hyper-)bent functions with multiple trace terms via Dillon exponents

• [Charpin-Gong 2008] have studied the hyper-bentness of Boolean functions which are sum of several Dillon-like monomial functions :

Let n = 2m. Let E' be a set of representatives of the cyclotomic cosets modulo $2^m + 1$ for which each coset has the maximal size n. Let f_{a_r} be the function defined on \mathbb{F}_{2^n} by

$$f_{a_r}(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m - 1)})$$
(1)

where $a_r \in \mathbb{F}_{2^m}$ and $R \subseteq E'$.

- when *r* is co-prime with $2^m + 1$, the functions f_{a_r} are the sum of several Dillon monomial functions.
- characterization of hyper-bent functions of the form (1) has been given by means of Dikson polynomials.

DEFINITION

The Dickson polynomials $D_r(X) \in \mathbb{F}_2[X]$ is defined by

$$D_r(X) = \sum_{i=0}^{\lfloor \frac{r}{2} \rfloor} \frac{r}{r-i} {r-i \choose i} X^{r-2i}, \quad r = 2, 3, \cdots$$

 $9/2^{\prime}$

(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

• In 2010, we have extended such an approach to treat Charpin-Gong like function with an additional trace term over \mathbb{F}_4 :

THEOREM ([MESNAGER 2010])

Let n = 2m with m odd. Let $b \in \mathbb{F}_4^*$ and β be a primitive element of \mathbb{F}_4 . Let $f_{a_r,b}$ defined on \mathbb{F}_{2^n} by

$$f_{a_r,b}(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^2(b x^{\frac{2^n - 1}{3}})$$

where $a_r \in \mathbb{F}_{2^m}$. Let g_{a_r} defined on \mathbb{F}_{2^m} by $\sum_{r \in \mathbb{R}} Tr_1^m(a_r D_r(x))$, where $D_r(x)$ is the Dickson polynomial of degree r.

- $f_{a_r,\beta}$ is (hyper-)bent if and only if, $\sum_{x \in \mathbb{F}_{2^m}^*, Tr_1^m(x^{-1})=1} \chi \Big(g_{a_r}(D_3(x)) \Big) = -2;$ equivalently, $\sum_{x \in \mathbb{F}_{2^m}} \chi \Big(Tr_1^m(x^{-1}) + g_{a_r}(D_3(x)) \Big) = 2^m - 2wt(g_{a_r} \circ D_3) + 4.$
- 2 $f_{a_r,1}$ is (hyper-)bent if and only if, $2\sum_{x\in\mathbb{F}_{2^m}^*,Tr_1^m(x^{-1})=1}\chi\left(g_{a_r}(D_3(x))\right) - 3\sum_{x\in\mathbb{F}_{2^m}^*,Tr_1^m(x^{-1})=1}\chi\left(g_{a_r}(x)\right) = 2.$

• In 2010, we have extended such an approach to treat Charpin-Gong like function with an additional trace term over \mathbb{F}_4 with *m* odd (i.e. $m \equiv 1 \pmod{2}$). • Adopting the approach developed by Mesnager [Mesnager 2010], Wang et al. [Wang-Tang-Qi-Yang-Xu 2011] studied in late 2011 the following family with an additional trace term on \mathbb{F}_{16} :

$$f_{a,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^4(b x^{\frac{2^m - 1}{5}})$$

where some further restrictions lie on the coefficients a_r , the coefficient *b* is in \mathbb{F}_{16} and *m* must verify $m \equiv 2 \pmod{4}$.

Both these approaches are quite similar and crucially depend on the fact that the hypothesis made on *m* implies that 3 or 5 do not only divide $2^n - 1$, but also $2^m + 1$.

(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Here, we show how such approaches can be extended to an infinity of different trace terms, covering all the possible Dillon-like exponents. In particular, we show that they are valid for an infinite number of other denominators, e.g 9, 11, 13,17, 33 etc. To this end, we consider a function of the general form

$$f_{a,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^t(b x^{s(2^m - 1)})$$

where

- n = 2m is an even integer,
- *R* is a set of representatives of the cyclotomic classes modulo $2^m + 1$,
- the coefficients a_r are in \mathbb{F}_{2^m} ,
- *s* divides $2^m + 1$, i.e $s(2^m 1)$ is a Dillon-like exponent. Set $\tau = \frac{2^m + 1}{s}$.
- $t = o(s(2^m 1))$, i.e t is the size of the cyclotomic coset of s modulo $2^m + 1$,
- the coefficient *b* is in \mathbb{F}_{2^t} .
- Our objective is to show how we can treat the property of hyper-bentness in this general case.

The following partial exponential sums are a classical tool to study hyper-bentness.

DEFINITION

Let $U = \{u \in \mathbb{F}_{2^n}^* \mid u^{2^m+1} = 1\}$. Let $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ be a Boolean function. We define $\Lambda(f)$ as :

$$\Lambda(f) = \sum_{u \in U} \chi_f(u)$$

THEOREM

Let
$$f_{a,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m-1)}) + Tr_1^t(bx^{s(2^m-1)})$$
. Then

 $f_{a,b}$ is (hyper)-bent if and only if $\Lambda(f_{a,b}) = 1$.

Let

•
$$V = \{v \in \mathbb{F}_{2^n}^* \mid v^s = 1\},$$

•
$$U = \{ u \in \mathbb{F}_{2^n}^* \mid u^{2^m+1} = 1 \}$$
 and ζ is a generator of U ,

•
$$W = \{ w \in \mathbb{F}_{2^n}^* \mid w^\tau = 1 \}.$$

The set U can be decomposed as $U = \bigcup_{i=0}^{\tau-1} \zeta^i V = \bigcup_{i=0}^{s-1} \zeta^i W$.

DEFINITION

Let $f_a(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m-1)})$ and $\overline{f}_a(x) = \sum_{r \in R} Tr_1^n(a_r x^r)$. For $i \in \mathbb{Z}$, define $S_i(a)$ and $\overline{S}_i(a)$ to be the partial exponential sums :

$$S_i(a) = \sum_{v \in V} \chi\left(f_a(\zeta^i v)\right) \text{ and } \overline{S}_i(a) = \sum_{v \in V} \chi\left(\overline{f}_a(\zeta^i v)\right).$$

Note that ζ is of order τ so that $S_i(a)$ and $\overline{S}_i(a)$ only depend on the value of i modulo $\tau := \frac{2^m + 1}{s}$.

DEFINITION

Let $f_a(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m-1)})$ and $\overline{f}_a(x) = \sum_{r \in R} Tr_1^n(a_r x^r)$. For $i \in \mathbb{Z}$, define $S_i(a)$ and $\overline{S}_i(a)$ to be the partial exponential sums

$$S_i(a) = \sum_{v \in V} \chi\left(f_a(\zeta^i v)\right) \text{ and } \overline{S}_i(a) = \sum_{v \in V} \chi\left(\overline{f}_a(\zeta^i v)\right).$$

THEOREM

- $\sum_{i=0}^{\tau-1} S_i(a) = 1 + 2T_1(g_a)$ where $T_1(f) = \sum_{x \in \{x \in \mathbb{F}_{2^m} | \mathcal{T}_1^m(1/x) = 1\}} \chi_f(x)$ and g_a be the Boolean function defined on \mathbb{F}_{2^m} as $g_a(x) = \sum_{r \in \mathbb{R}} Tr_1^m a_r D_r(x)$.
- For $0 \le i \le \tau 1$, then $S_i(a) = \overline{S}_{-2i \pmod{\tau}}(a)$.
- For r is co-prime with $2^m + 1$ then $\sum_{i=0}^{\tau-1} S_i(a) = 1 K_m(a)$
- For *l* be a divisor of τ and let *k* the integer such that $k = \tau/l$, then $\sum_{i=0}^{k-1} S_{il}(a) = \sum_{i=0}^{k-1} \overline{S}_{il}(a) = \frac{1}{l} (1 + 2T_1(g_a \circ D_l))$
- Let k = m/l. Suppose that the coefficients a_r lie in \mathbb{F}_{2^l} and that $2^l \equiv j \pmod{\tau}$, where *j* is a *k*-th root of $-1 \mod \tau$. Then $\overline{S}_i(a) = \overline{S}_{ij}(a)$

Solution We express $\Lambda(f_{a,b})$ by means of the partial exponential sums $\overline{S}_i(a)$:

we deduce :

THEOREM

$$\Lambda(f_{a,b}) = \chi\left(Tr_1^t b\right) \overline{S}_0(a) + \sum_{i=1}^{\frac{\tau-1}{2}} \left(\chi\left(Tr_1^t b\xi^i\right) + \chi\left(Tr_1^t b\xi^{-i}\right)\right) \overline{S}_i(a)$$

Recall that

 $f_{a,b}$ is (hyper)-bent if and only if $\Lambda(f_{a,b}) = 1$.

Remark

It is a difficult problem to deduce a completely general characterization of hyper-bentness in terms of complete exponential sums from our results. Nevertheless, several powerful applications of our results, valid for infinite families of Boolean functions can be described.

- In the first approach, we set an extension degree *m* and studied the corresponding exponents *s* dividing $2^m + 1$.
- It is however customary to go the other way around, i.e. set an exponent *s*, or a given form of exponents, which is valid for an infinite family of extension degrees *m* and devise characterizations valid for this infinity of extension degrees.
- I™ We provide the link between these two approaches.

We fix a value for τ and devise the extension degrees *m* for which τ divides $2^m + 1$.

- We have study the values of τ for which an infinite number of such extension degrees *m* exists
- **1** case of an odd prime number $: \tau = p$ (p prime).
- 2 case of a prime power : $\tau = p^k$ (*p* prime).
- **③** case of an odd composite number : $\tau = p_1^{k_1} \cdots p_r^{k_r}$ is a product of *r* ≥ 2 distinct prime powers.

イロン イロン イヨン イヨン 三日

(Hyper-)bent functions with multiple trace terms via Dillon-like exponents

Application :

 The case \(\tau = 3\): we recover the characterizations of hyper-bentness of functions of the family of [Mesnager 2010]

$$f_{a_r,b}(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^2(bx^{\frac{2^m - 1}{3}}), b \in \mathbb{F}_4^{\star}, m \equiv 1 \pmod{2}$$

 The case τ = 5 : we recover the characterizations of hyper-bentness of functions of the family of [Wang et al. 2011]

$$f_{a_r,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^4(bx^{\frac{2^n - 1}{5}}), b \in \mathbb{F}_{16}^{\star}, m \equiv 2 \pmod{4}$$

• The case $\tau = 9$: we characterize the hyper-bentness for a new family

$$f_{a_r,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^6(bx^{\frac{2^n - 1}{9}}), b \in \mathbb{F}_{64}^{\star}, m \equiv 3 \pmod{6}$$

• The case $\tau = 11$: we characterize the hyper-bentness for a new family

$$f_{a_r,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^{10}(b x^{\frac{2^n - 1}{11}}), b \in \mathbb{F}_{2^{10}}^{\star}, m \equiv 5 \pmod{10}$$

Application :

• The case $\tau = 13$: we characterize the hyper-bentness for a new family

$$f_{a_r,b}(x) = \sum_{r \in \mathbb{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^{12}(bx^{\frac{2^n - 1}{13}}), b \in \mathbb{F}_{2^{12}}^{\star}, m \equiv 6 \pmod{12}$$

• The case $\tau = 17$: we characterize the hyper-bentness for a new family

$$f_{a_r,b}(x) = \sum_{r \in \mathcal{R}} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^8(bx^{\frac{2^n - 1}{17}}), b \in \mathbb{F}_{2^8}^{\star}, m \equiv 4 \pmod{8}$$

• The case $\tau = 33$: we characterize the hyper-bentness for a new family

$$f_{a_r,b}(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^{10}(bx^{\frac{2^n - 1}{33}}), b \in \mathbb{F}_{2^{10}}^{\star}, m \equiv 5 \pmod{10}$$

• We study hyper-bent functions with multiple trace terms (including binomial functions) via Dillon-like exponents :

$$f_{a,b}(x) = \sum_{r \in R} Tr_1^n(a_r x^{r(2^m - 1)}) + Tr_1^t(b x^{s(2^m - 1)})$$

- We show how the approach developed by Mesnager to extend the Charpin–Gong family (and subsequently slightly extended by Wang et al) fits in a much more general setting.
- We tackle the problem of devising infinite families of extension degrees for which a given exponent is valid and apply these results not only to reprove straightforwardly the results of Mesnager and Wang et. al, but also to characterize the hyper-bentness of several new infinite classes of Boolean functions.
- We also propose a reformulation of such characterizations in terms of hyperelliptic curves and use it to actually build hyper-bent functions.