RUB

Improved Information Set Decoding

Alexander Meurer, Ruhr-Universität Bochum CBC Workshop 2012, Lyngby

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $\mathrm{n} \times \mathrm{n}$ - matrices

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $\mathrm{n} \times \mathrm{n}$ - matrices

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $n \times n$ - matrices

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $n \times n$ - matrices

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $n \times n$ - matrices

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $\mathrm{n} \times \mathrm{n}$ - matrices

- Strassen still performs best in practice (for reasonable n)

The Asymptotic Playground

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)$ for $\mathrm{n} \times \mathrm{n}$ - matrices

This talk: recent (asymptotic) progress in ISD.

Recap Binary Linear Codes

- $C=$ random binary [$n, k, d]$ code
- $\mathrm{n}=$ length $/ \mathrm{k}=$ dimension $/ \mathrm{d}=$ minimum distance

Bounded Distance Decoding (BDD)

- Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $w:=w t(e)=\left\lfloor\frac{d-1}{2}\right\rfloor$
- Find \mathbf{e} and thus $\mathbf{c}=\mathbf{x + e}$

Comparing Running Times

How to compare performance of decoding algorithms

- Running time $\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{d})$
- Fixed code rate $R=k / n$
- For $n \rightarrow \infty, k$ and d are related via Gilbert-Varshamov bound, thus

$$
T(n, k, d)=T(n, k)
$$

- Compare algorithms by complexity coefficient $F(k)$, i.e.

$$
T(n, k)=2^{F(k) \cdot n+o(n)}
$$

Comparing Running Times

How to compare performanc

- Running time $\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{d})$

Minimize $\mathrm{F}(\mathrm{k})$!

- Fixed code rate $R=k / n$
- For $n \rightarrow \infty, k$ and d are related vi bound, thus

$$
T(n, k, d)=T
$$

- Compare algorithms by comp kity coefficient $F(k)$, i.e.

$$
T(n, k)=2^{F(k) \cdot n+o(n)}
$$

Syndrome Decoding

(BDD) Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $\mathrm{wt}(\mathbf{e})=\mathrm{w}$, find \mathbf{e} !

- $\mathbf{H}=$ parity check matrix
- Consider syndrome s:= s(x)=H•X=H•(c+e)=H:e
\rightarrow Find linear combination of w columns of \mathbf{H} matching \mathbf{s}

Syndrome Decoding

(BDD) Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $\mathrm{wt}(\mathbf{e})=\mathrm{w}$, find \mathbf{e} !

- $\mathbf{H}=$ parity check matrix
- Consider syndrome $\mathbf{s}:=\mathrm{s}(\mathbf{x})=\mathbf{H} \cdot \mathbf{x}=\mathbf{H} \cdot(\mathbf{c}+\mathbf{e})=\mathbf{H} \cdot \mathbf{e}$
\rightarrow Find linear combination of w columns of \mathbf{H} matching \mathbf{s}

Brute-Force complexity

$$
\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{~d})=\binom{n}{w}
$$

Complexity Coefficients (BDD)

Complexity Coefficients (BDD)

Complexity Coefficients (BDD)

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Randomized quasi-systematic form

- Work on randomly column-permuted version of \mathbf{H}
- Transform \mathbf{H} into quasi-systematic form

First used in generalized ISD framework of [FSO9]

Information Set Decoding

"Reducing the brute-force search space by linear algebra."

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| $k+l$ | $n-k-l$ |
| :--- | :--- |
| \mathbf{e}_{1} | \mathbf{e}_{2} |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

Find all \mathbf{e}_{1} of weight p matching \mathbf{s} on first l coordinates

The ISD Principle

Find all \mathbf{e}_{1} of weight p matching \mathbf{s} on first l coordinates

- Method only recovers particular error patterns

- If no solution found:
\rightarrow Rerandomize \mathbf{H}

The ISD Principle

- $1^{\text {st }}$ step (randomization): Compute „fresh" random quasisystematic form of \mathbf{H}

- $2^{\text {nd }}$ step (search): Try to find a solution e amongst all

The ISD Principle

- $1^{\text {st }}$ step (randomization): Compute „fresh" random quasisystematic form of \mathbf{H}

0

$$
\mathrm{T}=\operatorname{Pr}\left[\text { "good rand." }{ }^{-1} \text { * } \mathrm{T}[\text { search }]\right.
$$

The ISD Search Step (Notation)

- Find vector \mathbf{e}_{1} of weight p with

$$
\mathbf{q}_{1}, \ldots, \mathbf{q}_{k+l}=\mathbf{s}
$$

The ISD Search Step (Notation)

- Find vector \mathbf{e}_{1} of weight p with

- Find selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

The ISD Search Step (Notation)

- Find vector \mathbf{e}_{1} of weight p with

- Find selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

We exploit $1+1=0$ to find e_{1} more efficiently!

A Meet-in-the-Middle Approach

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Disjoint partition $I=I_{1} \dot{\cup} I_{2}$ into left and right half

A Meet-in-the-Middle Approach

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- To find $I=I_{1} \dot{\cup} I_{2}$ run a Meet-in-the-Middle algorithm based on $\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s$
- Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

Complexity Coefficients (BDD)

The Representation Technique [HGJ10]

How to find a needle \mathbf{N} in a haystack H ...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N_{1}, \ldots, N_{r}
- Examine a $1 / r$ - fraction of H^{\prime} to find one N_{i}

The Representation Technique [HGJ10]

How to find a needle \mathbf{N} in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N_{1}, \ldots, N_{r}
- Examine a $1 / r$ - fraction of H^{\prime} to find one N_{i}

Technicality: Find a way to examine a $1 / r$ - fraction of H^{\prime} without completely
constructing it beforehand

Back to the MitM Approach

- The disjoint partition forces a unique solution
- Needle $=$ unique $\frac{(k+1) / 2}{\left[\frac{(k+1) / 2}{0}\right.}$
- Haystack $=$ all vectors $\frac{(k+1) / 2}{\frac{p / 2}{\frac{(k+1) / 2}{0}}}$

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

... and so on ...

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Haystack = set of all \square
- Needles $=\binom{p}{p / 2}$ representations

- Bottleneck: Efficient computation of a
$\frac{1}{\binom{p}{p / 2}}$ - fraction of the haystack

Complexity Coefficients (BDD)

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- $r=$ number of needles
- $\left|\mathrm{H}^{\prime}\right|=$ size of expanded haystack
- Ratio |H'| / r determines efficiency

\rightarrow Increase r while keeping IH'| small

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- $r=$ number of needles
- $\left|\mathrm{H}^{\prime}\right|=$ size of expanded haystack
- Ratio |H'| / r determines efficiency

\rightarrow Increase r while keeping |H'| small

$$
\text { Can we use } 1+1 \text { = } 0 \text { to increase } r ?
$$

Using $1+1=0$

"Decoding Random Binary Linear Codes in 2"/20: How $1+1$ = 0 Improves Information Set Decoding.'" joint work with A.Becker, A.Joux \& A.May (EUROCRYPT'12)

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

$I_{1} \square \mathrm{p} / 2+\epsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

$I_{1} \square \mathrm{p} / 2+\epsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

k+l

... and so on ...

p/2+

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

k+l

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

- Haystack = set of all $\square_{\mathrm{p} / 2+\epsilon}^{k+1}$
 How can we compute a $1 / R$ - fraction of the haystack?

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack ?

- Want to find one needle I_{1} (and suitable I_{2}) with

$$
\begin{gathered}
\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s \\
\mathbf{q}_{1}+\mathbf{q}_{3}+\mathbf{q}_{4}+\mathbf{q}_{11}=\mathbf{q}_{2}+\mathbf{q}_{4}+\mathbf{q}_{7}+\mathbf{q}_{12}+\mathbf{s}
\end{gathered}
$$

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack?

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack?

Uniform 0/1 - pe needle I_{1} (and suitable I_{2}) with coordinates

$$
\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s
$$

$\left.q_{1}+\tau_{3}+q_{4}+q_{11}=q_{2}+q_{4}+\tau_{7}+q_{12}+{ }_{s}\right\} \log (R)$ coordinates

- Fix $\sum_{i \in I_{1}} q_{i}$ to \mathbf{r} and $\sum_{j \in I_{2}} q_{j}$ to $\mathbf{s}+\mathbf{r}$ on $\log (\mathrm{R})$ coordinates
\rightarrow Expect one needle to fulfill the extra constraint!

How to use $1+1=0$

How can we compute 2

- Fix $\sum_{i \in I_{1}} q_{i}$ to \mathbf{r} and $\sum_{j \in I_{2}} q_{j}$ to $\mathbf{s}+\mathbf{r}$ on $\log (\mathrm{R})$ coordinates
\rightarrow Expect one needle to fulfill the extra constraint!

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

On $\log (\mathrm{R})$ coordinates!

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

On $\log (\mathrm{R})$ coordinates!

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

- Choose random partition $\{1, \ldots, k+l\}=P_{1} \dot{\cup} P_{2}$ with

$$
\left|P_{1}\right|=\left|P_{2}\right|=\frac{k+l}{2}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

On $\log (\mathrm{R})$ coordinates!

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

- Choose random partition $\{1, \ldots, k+l\}=P_{1} \dot{\cup} P_{2}$ with

$$
\left|P_{1}\right|=\left|P_{2}\right|=\frac{k+l}{2}
$$

- Compute base lists

$$
\begin{aligned}
& \mathcal{B}_{1}:=\left\{\left(J_{1}, \sum_{J_{1}} q_{j}\right):\left|J_{1}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{1} \subset P_{1}\right\} \\
& \mathcal{B}_{2}:=\left\{\left(J_{2}, \sum_{J_{2}} q_{j}+r\right):\left|J_{2}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{2} \subset P_{2}\right\}
\end{aligned}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

On $\log (\mathrm{R})$ coordinates!

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

Merge \mathcal{B}_{1} and \mathcal{B}_{2} into \mathcal{L}_{1} !

- Compute base lists

$$
\begin{aligned}
& \mathcal{B}_{1}:=\left\{\left(J_{1}, \sum_{J_{1}} q_{j}\right):\left|J_{1}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{1} \subset P_{1}\right\} \\
& \mathcal{B}_{2}:=\left\{\left(J_{2}, \sum_{J_{2}} q_{j}+r\right):\left|J_{2}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{2} \subset P_{2}\right\}
\end{aligned}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

On $\log (\mathrm{R})$ coordinates!

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

Can be improved! Use representations again!

- Compute base lists

$$
\begin{aligned}
& \mathcal{B}_{1}:=\left\{\left(J_{1}, \sum_{J_{1}} q_{j}\right):\left|J_{1}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{1} \subset P_{1}\right\} \\
& \mathcal{B}_{2}:=\left\{\left(J_{2}, \sum_{J_{2}} q_{j}+r\right):\left|J_{2}\right|=\frac{p}{4}+\frac{\varepsilon}{2} \text { and } J_{2} \subset P_{2}\right\}
\end{aligned}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

where $p_{1}=\frac{p}{2}+\varepsilon_{1}$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

where $p_{1}=\frac{p}{2}+\varepsilon_{1}$

- Write $I_{1}=J_{1} \Delta J_{2}$ with $J_{i} \subset\{1, \ldots, k+l\}$

$$
\text { and }\left|J_{i}\right|=\frac{p_{1}}{2}+\varepsilon_{2}
$$

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|=\frac{p}{2}+\varepsilon \text { and } \sum_{I_{1}} q_{i}=r\right\}
$$

where $p_{1}=\frac{p}{2}+\varepsilon_{1}$

- Write $I_{1}=J_{1} \Delta J_{2}$ with $J_{i} \subset\{1, \ldots, k+l\}$

$$
\text { and }\left|J_{i}\right|=\frac{p_{1}}{2}+\varepsilon_{2}
$$

- Introduces $R_{2}=\binom{p_{1}}{p_{1} / 2}\binom{k+l-p_{1}}{\varepsilon_{2}}$ reps for each I_{1}

How to Fix $\log (\mathrm{R})$ Coordinates

- We want to compute

$$
\mathcal{L}_{1}=\left\{I_{1} \subset\{1, \ldots, k+l\}:\left|I_{1}\right|\right.
$$

where $p_{1}=\frac{p}{2}+\varepsilon_{1}$

Compute two lists $\mathcal{L}_{1}^{1}, \mathcal{L}_{1}^{2}$ containing a $1 / \mathrm{R}_{2}$-fraction

- Write $I_{1}=J_{1} \Delta J_{2}$ with $J_{i} \subset\{1, \ldots, k+l\}$

$$
\text { and }\left|J_{i}\right|=\frac{p_{1}}{2}+\varepsilon_{2}
$$

- Introduces $R_{2}=\binom{p_{1}}{p_{1} / 2}\binom{k+l-p_{1}}{\varepsilon_{2}}$ reps for each I_{1}

The Complete Computation Tree

Randomly partioned base lists $\mathcal{B}_{i, 1}$ and $\mathcal{B}_{i, 2}$
$\binom{(k+l) / 2}{p_{2} / 2}$

The Complete Computation Tree

The Complete Computation Tree

The Complete Computation Tree

Warning! Inconsistencies (i.e. matchings of false weight) have to be sorted out!

The Complete Computation Tree

Some Technicalities

- Need to exclude "badly distributed" $\mathbf{q}_{1}, \ldots, \mathbf{q}_{\mathrm{k}+\mathrm{l}}$
\rightarrow intermediate lists become too large (abort)
\rightarrow solution get's lost w.h.p.

Some Technicalities

Can be avoided in

- Need to exclude "badly dis
\rightarrow intermediate lists bed
\rightarrow solution get's lost w.h.p.
- Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)

Some Technicalities

- Need to exclude "badly distributed" $\mathbf{q}_{1}, \ldots, \mathbf{q}_{\mathrm{k}+\mathrm{l}}$
\rightarrow intermediate lists become too large (abort)
\rightarrow solution get's lost w.h.p.
- Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)
- We only fix parameters to guarantee

E[\# surviving reps] ≥ 1

Some Technicalities

- Need to exclude "badly distributed" $\mathbf{q}_{1}, \ldots, \mathbf{q}_{\mathrm{k}+\mathrm{l}}$
\rightarrow intermediate lists become too large (abort)
\rightarrow solution get's lost w.h.p.
- Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)
- We only fix parameters to guarantee

E[\# surviving reps] ≥ 1

Main Result $F(k) \leq 0.0494$

Main Result $F(k) \leq 0.0494$

In Practical terms...

- 256-Bit security for McEliece revisited

$$
\rightarrow[n, k, d]=[6624,5129,117]
$$

- Exact complexity analysis (using tricks from [BLPO8])
\rightarrow Stern $\approx 2^{256}$
\rightarrow Ball-Collisions $\approx 2^{254}$
\rightarrow Our Algorithm $\approx 2^{239}$
- Parameters: $l=286 \quad \mathrm{p}=44 \quad \epsilon_{1}=12 \quad \epsilon_{2}=1$

In Practical terms...

- 256-Bit security for McEliec
$\rightarrow[n, k, d]=[6624,5129,117]$
- Exact complexity analysis (し
\rightarrow Stern $\approx 2^{256}$
\rightarrow Ball-Collisions $\approx 2^{254}$
\rightarrow Our Algorithm $\approx 2^{239}$
- Parameters: $\mathrm{l}=286 \quad \mathrm{p}=44 \quad \epsilon_{1}=12 \quad \epsilon_{2}=1$

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Even practical impact (e.g. for high security levels of McEliece)
- Full Version ePrint 2012/026

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations

McEliece)

- Full Version ePrint 2012/026

