RUB

Improved Information Set Decoding

Alexander Meurer, Ruhr-Universität Bochum CBC Workshop 2012, Lyngby

• We are interested in asymptotically fastest algorithms

- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

• Strassen still performs best in practice (for reasonable n)

- We are interested in asymptotically fastest algorithms
- Prominent example: Matrix multiplication
- Measure runtime as $\mathcal{O}\left(n^{\omega}\right)~$ for n x n matrices

This talk: recent (asymptotic) progress in ISD.

Recap Binary Linear Codes

- C = random binary [n,k,d] code
- n = length / k = dimension / d = minimum distance

Bounded Distance Decoding (BDD)

- Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and $\mathbf{w} := \operatorname{wt}(\mathbf{e}) = \left\lfloor \frac{d-1}{2} \right\rfloor$
- Find **e** and thus **c** = **x**+**e**

Comparing Running Times

How to compare performance of decoding algorithms

- Running time T(n,k,d)
- Fixed code rate R = k/n
- For $n \rightarrow \infty$, k and d are related via Gilbert-Varshamov bound, thus

T(n,k,d) = T(n,k)

• Compare algorithms by complexity coefficient F(k), i.e.

$$T(n,k) = 2^{F(k) \cdot n + o(n)}$$

Comparing Running Times

(BDD) Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in C$ and wt(\mathbf{e})=w, find \mathbf{e} !

- **H** = parity check matrix
- Consider syndrome s := $s(x) = H \cdot x = H \cdot (c+e) = H \cdot e$
- \rightarrow Find linear combination of w columns of **H** matching **s**

(BDD) Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and wt(\mathbf{e})=w, find \mathbf{e} !

- **H** = parity check matrix
- Consider syndrome s := $s(x) = H \cdot x = H \cdot (c+e) = H \cdot e$
- \rightarrow Find linear combination of w columns of **H** matching **s**

Brute-Force complexity
$$T(n,k,d) = \binom{n}{w}$$

Complexity Coefficients (BDD)

Complexity Coefficients (BDD)

Complexity Coefficients (BDD)

Permuting the columns of H does not change the problem

• Permuting the columns of **H** does not change the problem

• Permuting the columns of **H** does not change the problem

• Permuting the columns of **H** does not change the problem

RUB

• Elementary row operations on **H** do not change the problem

- Permuting the columns of **H** does not change the problem
- Elementary row operations on **H** do not change the problem

• Permuting the columns of **H** does not change the problem

RUB

• Elementary row operations on **H** do not change the problem

Randomized quasi-systematic form

- Work on randomly column-permuted version of ${\bf H}$
- Transform **H** into quasi-systematic form

RUB

First used in generalized ISD framework of [FS09]

Information Set Decoding

"Reducing the brute-force search space by linear algebra."

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

Find all \mathbf{e}_1 of weight p matching s on first l coordinates

 1st step (randomization): Compute "fresh" random quasisystematic form of H

• 2nd step (search): Try to find a solution **e** amongst all

- $1^{\rm st}$ step (randomization): Compute "fresh" random quasi-systematic form of ${\rm \textbf{H}}$

The ISD Search Step (Notation)

• Find vector e₁ of weight p with

The ISD Search Step (Notation)

• Find vector e₁ of weight p with

$$\mathbf{e}_{1}$$

$$\mathbf{q}_{1}, ..., \mathbf{q}_{k+l} = \mathbf{s}$$

• Find selection
$$I \subset [1, \dots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

The ISD Search Step (Notation)

Find vector e₁ of weight p with

$$\begin{array}{c} \mathbf{e}_1 \\ \mathbf{q}_1, ..., \mathbf{q}_{k+l} \end{array} = \mathbf{s} \end{array}$$

RUB

• Find selection $I \subset [1, \dots, k+l], |I| = p$ with $\sum_{i \in I} q_i = \begin{pmatrix} i \\ \vdots \\ s_l \end{pmatrix}$

We exploit 1+1=0 to find e_1 more efficiently!

A Meet-in-the-Middle Approach

Find a selection
$$I \subset [1, \ldots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

RUB

• Disjoint partition $I = I_1 \dot{\cup} I_2$ into left and right half

A Meet-in-the-Middle Approach

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- To find $I = I_1 \dot{\cup} I_2$ run a Meet-in-the-Middle algorithm based on $\sum_{i \in I_1} q_i = \sum_{j \in I_2} q_j + s$
- Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

Complexity Coefficients (BDD)

The Representation Technique [HGJ10]

How to find a needle N in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N₁, ..., N_r
- Examine a 1/r fraction of H' to find one N_i

How to find a needle N in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N₁, ..., N_r
- Examine a 1/r fraction of H' to find one N_i

Technicality: Find a way to examine a 1/r – fraction of H' without completely constructing it beforehand

Back to the MitM Approach

- The disjoint partition forces a unique solution
- Needle = unique
 p/2
- Haystack = all vectors p/2 (k+l)/2 (k+l)/2

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, \ldots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

RUB

- Haystack = set of all p/2
- Needles = $\binom{p}{p/2}$ representations $\frac{k+l}{p/2}$,

• Bottleneck: Efficient computation of a $\frac{1}{\binom{p}{p/2}}$ - fraction of the haystack

Complexity Coefficients (BDD)

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- r = number of needles
- |H'| = size of expanded haystack
- Ratio |H'| / r determines efficiency

RUB

→ Increase r while keeping |H'| small

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- r = number of needles
- |H'| = size of expanded haystack
- Ratio |H'| / r determines efficiency

RUP

→ Increase r while keeping |H'| small

Can we use 1+1 = 0 to increase r?

Using 1 + 1 = 0

"Decoding Random Binary Linear Codes in $2^{n/20}$: How 1 + 1 = 0 Improves Information Set Decoding." joint work with A.Becker, A.Joux & A.May (EUROCRYPT'12)

Write
$$I = I_1 \Delta I_2 := (I_1 \cup I_2) \setminus (I_1 \cap I_2)$$
 as the symmetric difference of intersecting sets $|I_1 \cap I_2| = \varepsilon$

• Haystack = set of all $p/2 + \epsilon$

• Needles =
$$\binom{p}{p/2}\binom{k+l-p}{\varepsilon}$$
 representations
=:R

How can we compute a 1/R – fraction of the haystack ?

How can we compute a 1/R – fraction of the haystack ?

• Want to find *one* needle I_1 (and suitable I_2) with

$$\sum_{i \in I_1} q_i = \sum_{j \in I_2} q_j + s$$
$$\mathbf{q}_1 + \mathbf{q}_3 + \mathbf{q}_4 + \mathbf{q}_{11} = \mathbf{q}_2 + \mathbf{q}_4 + \mathbf{q}_7 + \mathbf{q}_{12} + \mathbf{s}$$

How can we compute a 1/R – fraction of the haystack ?

How can we compute a 1/R – fraction of the haystack ?

→ Expect one needle to fulfill the extra constraint!

RUB

→ Expect one needle to fulfill the extra constraint!

• We want to compute

$$\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$$

• We want to compute On log(R) coordinates!

$$\mathcal{L}_{1} = \left\{ I_{1} \subset \{1, \dots, k+l\} : |I_{1}| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_{1}} q_{i} = r \right\}$$

We want to compute
$$On \log(\mathbb{R})$$
 coordinates!
 $\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$

RUB

• Choose random partition $\{1, \ldots, k+l\} = P_1 \dot{\cup} P_2$ with $|P_1| = |P_2| = \frac{k+l}{2}$

• We want to compute

On log(R) coordinates!

$$\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$$

- Choose random partition $\{1, \ldots, k+l\} = P_1 \dot{\cup} P_2$ with $|P_1| = |P_2| = \frac{k+l}{2}$
- Compute base lists $\mathcal{B}_1 := \left\{ (J_1, \sum_{J_1} q_j) : |J_1| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_1 \subset P_1 \right\}$ $\mathcal{B}_2 := \left\{ (J_2, \sum_{J_2} q_j + r) : |J_2| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_2 \subset P_2 \right\}$

1 . . .

• We want to compute Unlog(R) coordinates!

$$\mathcal{L}_{1} = \left\{ I_{1} \subset \{1, \dots, k+l\} : |I_{1}| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_{1}} q_{i} = r \right\}$$
Merge \mathcal{B}_{1} and \mathcal{B}_{2} into \mathcal{L}_{1} !
• Compute base lists

$$\mathcal{B}_{1} := \left\{ (J_{1}, \sum_{J_{1}} q_{j}) : |J_{1}| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_{1} \subset P_{1} \right\}$$

$$\mathcal{B}_{2} := \left\{ (J_{2}, \sum_{J_{2}} q_{j} + r) : |J_{2}| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_{2} \subset P_{2} \right\}$$

1.1
• We want to compute On log(R) coordinates!

$$\mathcal{L}_{1} = \left\{ I_{1} \subset \{1, \dots, k+l\} : |I_{1}| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_{1}} q_{i} = r \right\}$$

RUB

Can be improved! Use representations again!

• Compute base lists $\mathcal{B}_1 := \left\{ (J_1, \sum_{J_1} q_j) : |J_1| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_1 \subset P_1 \right\}$ $\mathcal{B}_2 := \left\{ (J_2, \sum_{J_2} q_j + r) : |J_2| = \frac{p}{4} + \frac{\varepsilon}{2} \text{ and } J_2 \subset P_2 \right\}$

• We want to compute

$$\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$$

where $p_1 = \frac{p}{2} + \varepsilon_1$

• We want to compute

$$\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$$

where $p_1 = \frac{p}{2} + \varepsilon_1$

RUB

• Write $I_1 = J_1 \Delta J_2$ with $J_i \subset \{1, \dots, k+l\}$ and $|J_i| = \frac{p_1}{2} + \varepsilon_2$

• We want to compute

$$\mathcal{L}_1 = \left\{ I_1 \subset \{1, \dots, k+l\} : |I_1| = \frac{p}{2} + \varepsilon \text{ and } \sum_{I_1} q_i = r \right\}$$

where $p_1 = \frac{p}{2} + \varepsilon_1$

RUB

• Write $I_1 = J_1 \Delta J_2$ with $J_i \subset \{1, \dots, k+l\}$ and $|J_i| = \frac{p_1}{2} + \varepsilon_2$ • Introduces $R_2 = {p_1 \choose p_1/2} {k+l-p_1 \choose \varepsilon_2}$ reps for each I_1

Randomly partioned base lists $\mathcal{B}_{i,1}$ and $\mathcal{B}_{i,2}$ $\begin{pmatrix} (k+l)/2 \\ p_2/2 \end{pmatrix}$

• Need to exclude "badly distributed" \mathbf{q}_1 , ..., \mathbf{q}_{k+1}

 \rightarrow intermediate lists become too large (abort)

→ solution get's lost w.h.p.

Some Technicalities

Need to exclude "badly dist

→ intermediate lists bec

 \rightarrow solution get's lost w.h.p.

 Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)

Can be avoided in implementations! Do non-disjoint base lists! • Need to exclude "badly distributed" \mathbf{q}_1 , ..., \mathbf{q}_{k+1}

 \rightarrow intermediate lists become too large (abort)

→ solution get's lost w.h.p.

- Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)
- We only fix parameters to guarantee $\mathsf{E}[\texttt{# surviving reps}] \geq 1$

• Need to exclude "badly distributed" \mathbf{q}_1 , ..., \mathbf{q}_{k+1}

 \rightarrow intermediate lists become too large (abort)

→ solution get's lost w.h.p.

- Method introduces extra inverse-polynomial failure probability (due to disjoint partitions on bottom level)
- We only fix parameters to guarantee $\mathsf{E}[\texttt{# surviving reps}] \geq 1$

Main Result $F(k) \leq 0.0494$

Main Result $F(k) \le 0.0494$

In Practical terms...

• 256-Bit security for McEliece revisited

 \rightarrow [n,k,d] = [6624,5129,117]

- Exact complexity analysis (using tricks from [BLP08])
 - → Stern $\approx 2^{256}$
 - → Ball-Collisions $\approx 2^{254}$
 - \rightarrow Our Algorithm $\approx 2^{239}$
- Parameters: l = 286 p = 44 $\epsilon_1 = 12$ $\epsilon_2 = 1$

In Practical terms...

- 256-Bit security for McEliec
 → [n,k,d] = [6624,5129,117]
- Exact complexity analysis (u
 → Stern ≈ 2²⁵⁶
 - → Ball-Collisions $\approx 2^{254}$
 - \rightarrow Our Algorithm $\approx 2^{239}$
- Parameters: l = 286 p = 44 $\epsilon_1 = 12$ $\epsilon_2 = 1$

Toolkit for optimal parameter choices will be available soon (includes all ISD algorithms up-todate)

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Even practical impact (e.g. for high security levels of McEliece)
- Full Version ePrint 2012/026

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
 Even practical impact (e.g. fo) fight security levels of

McEliece)

• Full Version ePrint 2012/026