Improved Information Set Decoding

Alexander Meurer, Ruhr-Universitat Bochum
CBC Workshop 2012, Lyngby




The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices



The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices

naive

| |
| | »,

2 3




The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices

Strassen
| |

|
2 2,808




The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices

CW

|
2 2,376




The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices

Williams
| |

|
2 2,327




The Asymptotic Playground &

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices

Williams
| |

|
2 23727 “

e Strassen still performs best in practice (for reasonable n)



The Asymptotic Playground M

 We are interested in asymptotically fastest algorithms
 Prominent example: Matrix multiplication

e Measure runtime as O (n“) for n x n - matrices
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This talk: recent (asymptotic) progress in ISD.




Recap Binary Linear Codes M

e C=random binary [n,k,d] code

e n=length / k=dimension / d = minimum distance

Bounded Distance Decoding (BDD)

e Given x=c+e withceC

and w ;= wt(e) = \_%J [%J \ |

e Find e and thus ¢ = x+e




Comparing Running Times M

How to compare performance of decoding algorithms
e Running time T(n,k,d)
 Fixed code rate R =k/n

e For n>oo, k and d are related via Gilbert-Varshamov
bound, thus

T(n,k,d) =T(n,k)

 Compare algorithms by complexity coefficient F(k), i.e.

T(n,k) =27 n+olr



Comparing Running Times

How to compare performanc

« . '
* Running time T(n,k,d) Minimize F(k)
 Fixed code rate R =k/n

e For n»>o, kand d are relateﬂ
bound, thus

rt-Varshamov

T(nkd)=T

e Compare algorithms by comp

ity coefficient F(k), i.e.

T(ﬂ,k) 2F *n+o(n



Syndrome Decoding M

(BDD) Given x =c+e with ¢€C and wt(e)=w, find e!

e H = parity check matrix

e Consider syndrome s :=s(x) =Hx=H'(ct+te) =He

- Find linear combination of w columns of H matching s

|
n
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Syndrome Decoding M

(BDD) Given x =c+e with ¢€C and wt(e)=w, find e!

e H = parity check matrix

e Consider syndrome s :=s(x) =Hx=H'(ct+te) =He

- Find linear combination of w columns of H matching s

n

Brute-Force complexity

Tl
T(n,k,d) = (w>

H
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Complexity Coefficients (BDD)
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| | | |
0,05 0,05570,0576 0,06

Brute-Force




Some Basic Observations for BDD M
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Some Basic Observations for BDD

Allowed (linear algebra) transformations

e Permuting the columns of H does not change the
problem

e Elementary row operations on H do not change the
problem

| weight w |

n

H -

\

Invertible (n-k)x(n-k) matrix




Randomized quasi-systematic form

e Work on randomly column-permuted version of H

* Transform H into quasi-systematic form

First used in generalized ISD framework of [FS09]




Information Set Decoding

"Reducing the brute-force search
space by linear algebra.”
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e Structure of H allows to divide e = e, e,

Focus on e, matching

s on first | coordinates




The ISD Principle M

Find all e, of weight p matching s on first L coordinates
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The ISD Principle M

Find all e, of weight p matching s on first L coordinates

£

e Method only recovers

particular error patterns
k+L n-k-1

! €,

P W-p
} | coordinates

* [f no solution found:
- Rerandomize H




The ISD Principle

e 1% step (randomization): Compute ,fresh” random quasi-

systematic form of H

k+L

n-k-Ll

e

1

&,

P

W-p

-

» 2" step (search): Try to find a solution e amongst all

with

0




The ISD Principle M

e 1% step (randomization): Compute ,fresh” random quasi-
systematic form of H

= Pr[,good rand.“]™ * T[search]

k+L n-k-L
e e, with e,
p W-p



The ISD Search Step (Notation) M

* Find vector € of weight p with
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* Find vector € of weight p with

ql P qk+l

e Find selectionI C [1,...,k+1],|I| = p with Zqi _

1l



The ISD Search Step (Notation)

* Find vector € of weight p with

1l

S1
» Find selectionI C [1,...,k+1],|I| = pwith ) a = ()

We exploit 1+1=0 to find e, more efficiently!




A Meet-in-the-Middle Approach

el

51
Find a selection I C [1,...,k+1], |I| = p with > 4= (

Sl

)

 Disjoint partition I = I;UI, into left and right half

(k+L)
([T T o[ [ T
(k+l) / 2

n[TLoz ]
: [ I>

(k+l) / 2




A Meet-in-the-Middle Approach

el

51
Find a selection I C [1,.... k + 1], [I| = p with 2_a = ()

Sl

e To find I = I[;UI, run a Meet-in-the-Middle algorithm
basedon Y ¢= > qj+s

el j1€ls

 Same F(k) as recent Ball-Collision decoding [BLP11]
as shown in [MMT11]
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The Representation Technique [HGJ10] E

How to find a needle N in a haystack H...

e Expand H into larger
stack H'

e Expanding H' introduces
r many representations
N ,..,N

1 r

e Examine a 1/r — fraction
of H' to find one Ni



The Representation Technique [HGJ10] M

How to find a needle N in a haystack H...

e Expand H into larger

stack H' Technicality: Find a way to

, . examine a 1/r — fraction

* Expanding i lntrod.uces of H' without completely
Il’\lmany [ilepresenta’uons constructing it beforehand

1 r

e Examine a 1/r — fraction
of H' to find one Ni



Back to the MitM Approach

e The disjoint partition forces a unique solution

. k+l) / 2 k+l) / 2
« Needle = unique ME AT 0]

(k+l) / 2 (k+l) / 2
 Haystack = all vectors oz T 0 ]




Using Representations [MMT11]
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51
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* Basic representation technique

e Arbitrary disjoint partition
K+L
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Using Representations [MMT11]

51
Find a selection I C [1,.... k + 1], [I| = p with 2_a = ()

el S

 Haystack = set of all 7

k+L

 Needles = (p) representations [T _o/20

p/2 k+L
p/2

* Bottleneck: Efficient computation of a
1

(p72)

- fraction of the haystack




Complexity Coefficients (BDD)
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The Representation Technique M

Optimizing the Representation Technique [BCJ11]

e r=number of needles

* |H'| = size of expanded haystack

e Ratio |H'| / r determines efficiency

- Increase r while keeping |H'| small



The Representation Technique M

Optimizing the Representation Technique [BCJ11]

e r=number of needles

* |H'| = size of expanded haystack

e Ratio |H'| / r determines efficiency

- Increase r while keeping |H'| small

Canweuse 1+1 =0 toincreaser ?




Usingl+1=0

"Decoding Random Binary Linear Codes in 2"*°: How
1+ 1 =0Improves Information Set Decoding."
joint work with A.Becker, A.Joux & A.May (EUROCRYPT'12)



Howtouse ! +1 =0 M

Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢
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Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢

:Zq]'—l-s

jels

k+L

K+l




Howtouse ! +1 =0 M

Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢

’ |
Z q; Double columns cancel out = Z q; + S
icly due to 1+1=0'"! jeIs

ﬂ L
K+l
A1

K+l

12‘ |O/2+IE I I:l
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Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢

(I T -L T T[]

k+L
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Howtouse ! +1 =0 M

Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢

(I T -L T T[]

.. and so on ... (@ | (fm—p)
p .

representations




Howtouse ! +1 =0 M

Write 1 = WAL = (Il U _[2) \ (Il M IQ) as the Symmetric
difference of intersecting sets |I1 N Ix| =¢

 Haystack = set of all YPET:

 Needles = ( p2) (k+l_p> representations
O p/ € P k+L
N N YrEY:

k+L

(L o®2-ET 1],..

How can we compute a 1/R - fraction of the haystack ?




Howtouse ! + 1 =0 M

How can we compute a 1/R - fraction of the haystack ?

 Want to find one needle I; (and suitable I,) with

Z%ZZQJ""S

€14 JEI2

9,+9,+9,+9;, = 9, +9,+9; +q,+ s
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Howtouse 1l +1 =0 M

How can we compute a 1/R - fraction of the haystack ?

ne needle 7; (and suitable I,) with

Uniform 0O/1 -
coordinates Y =) qi+s
&75611 VISTP

} log(R) coordinates

e Fix > & torand Y ¢ tos+ron log(R) coordinates

€14 Jj€ls

- Expect one needle to fulfill the extra constraint!




Howtouse ! +1 =0 M

How can we compute g

But how do we compute

h .
Uniformo/1 - "€ e those restricted I
coordinates Y u and I, 7

&7’611

V T TOGTY CUUTUTTATTS

e Fix > & torand Y ¢ tos+ron log(R) coordinates

€14 Jj€ls

- Expect one needle to fulfill the extra constraint!
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e Choose random partition {1,...,k+ 1} = PLUP, with
k41

[Pr] = |Pe| = ——
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 We want to compute On log(R) coordinates!

r » ~/
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\ I, J

Merge B; and B, Into £ |

 Compute base lists
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How to Fix log(R) Coordinates &

 We want to compute On log(R) coordinates!

r » ~/
£1:<IlC{l,...,k—l—l}:|1—1|:§—|—eand Zqizfiw

\ I, J

Can be improved! Use representations again!

 Compute base lists

\

3
By =< (Jl,qu) | J1] :g—l_i and J; C P
\ J1

/
( )

E
(JQ,ZQj"‘T) : |J2‘=§—I—§ and Jo C Py »

\ Jo J

B :
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How to Fix log(R) Coordinates M

 We want to compute

4 )

£1=<IlC{l,...,k+l}:|[1|:g+sand Zqizfr>

\ I, J

+ &1

DO |3

where p1 =



How to Fix log(R) Coordinates M

 We want to compute

4 )

£1=<IlC{l,...,k+l}:|[1|:g+sand Zqizfr>

\ I, J

P
where p1 = 5 + €1

e Write 1 = J1AJ> with J; c {1,...,k+1}

and |J,| = % + &



How to Fix log(R) Coordinates &

 We want to compute

4 )

£1=<IlC{l,...,k+l}:|[1|:g+sand Zqizfr>

\ I, J

P
where p1 = 7= +¢€1

2
e Write 1 = J1AJ> with J; c {1,...,k+1}
and ‘JZ‘I%—I— 9



How to Fix log(R) Coordinates M

e \We want to Compute CompUte two lists ﬁ%, ﬁ%

7 containing a 1/R_-fraction
Li=<qL C{l,....k+1}:|L]

of those .J;, J5 !

\

where p1 = 5 +¢1 ]~

e Write 1 = J1AJ> with J; c {1,...,k+1}



The Complete Computation Tree M

(k + 1) /2)

Randomly partioned base lists B;,1 and B; 2 (
p2/2




The Complete Computation Tree M

k+1)/2
Randomly partioned base lists B;.1 and B; 2 (( 0/ )
v V7 7
(k+l)
£l 2 cl 2 P>
Ry

log(Rz) coordi-
nates fixed




The Complete Computation Tree

k+1)/2
Randomly partioned base lists B;.1 and B; 2 (( 0/ )
VAVARRVAVas
(k+l)
L L3 L L5 D2
N\ B
k+1
[,1 [,2 ( P1 )
Ry

log(Rl) coordi-
nates fixed




The Complete Computation Tree M

k+1)/2
Randomly partioned base lists B;.1 and B; 2 (( p+/;/ )
2

(k—l—l)

Ly Ly c} 3 ]p%zz
\V4 .,
L [,2 ( pt )

Ry

Warning! Inconsistencies (i.e. matchings
of false weight) have to be sorted out!




The Complete Computation Tree

Randomly partioned base lists B;,1 and B; 2 (

(k—l—l)
Ly L3 L5 L5 =
Ro
Y |l coordi- Y k]
I nates fixed Lo (pl )
Candidate solutions I = I; Al L] - | L2 -




Some Technicalities

- Need to exclude "badly distributed”q_, ..., g

k+1

- Intermediate lists become too large (abort)

- solution get's lost w.h.p.
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Can be avoided in

. Need to exclude "badly dis{ implementations! Do
non-disjoint base lists!
- intermediate lists beq

- solution get's lost w.h.p.

 Method introduces extra inverse-polynomial failure

probability (due to disjoint partitions on bottom level)
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E[# surviving reps] = 1
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Main Result F(k) < 0.0494

BJMM
I |

Ball—Cpllision

MMT S%tern Prange
| 1 | |

I !
0,0494 0,05

| I | |
0,0537 0,0557 0,0576 0,06

0,0556
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Main Result F(k) < 0.0494

- - - Ball-Collisions
F (k) — MMT
o BJMM

005
[LRIEN o
003 -
LRI

ool




In Practical terms... &

e 256-Bit security for McEliece revisited
- [n,k,d] = [6624,5129,117]

e Exact complexity analysis (using tricks from [BLPOS8])
> Stern = 2°%°
- Ball-Collisions = 2***

- Our Algorithm = 2°%

|l
—
NO
M

|
—

« Parameters: |=286 p=44 €,



In Practical terms... M

e 256-Bit security for McEliec Toolkit for olptimal. para-
meter choices will be

> [nk,d] = [6624,5129,117] available soon (includes

all ISD algorithms up-to-
* Exact complexity analysis (u date)

> Stern = 2°%°
- Ball-Collisions = 2%

- Our Algorithm = 2°%

» Parameters: |=286 p=44 € =12 ¢=1



Wrapping up...

Summary
e Using 1+1=0 introduces extra representations
« Asymptotically fastest generic decoding algorithm

* Even practical impact (e.g. for high security levels of

McEliece)

e Full Version ePrint 2012/026
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Summary
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