Code-Based Cryptography Workshop 2012

9 – 11 May 2012, Lyngby, Denmark

On the Design of Code-Based Signatures

Ayoub Otmani

ayoub.otmani@unicaen.fr

Outline

- 1. Fiat-Shamir paradigm
- 2. Hash-and-Sign paradigm
- 3. "Lossy Source Coding" Signatures (joint work with J.P. Tillich)

About this Lecture ...

- ▷ Focus on "classical" signatures
 - Authentication
 - Integrity
 - Non-repudiation

▷ "Sophisticated" signatures are **not treated**:

Ring signature, threshold ring signature, blind signature, undeniable signature, ...

Signature Scheme

Definition. A *signature scheme* is given by **three** algorithms:

 \triangleright (sk, pk) \leftarrow KeyGen(λ) where λ is a security parameter

 $\triangleright \ \sigma \longleftarrow \mathtt{Sign}(\mathtt{sk}, \boldsymbol{m}) \text{ where } \boldsymbol{m} \in \{0, 1\}^*$

 $\triangleright b \longleftarrow \texttt{Verify}(\texttt{pk}, \boldsymbol{m}, \sigma) \texttt{ where } b \in \{\texttt{accept}, \texttt{reject}\} \texttt{ and such that:}$ $\texttt{Verify}\Big(\texttt{pk}, \boldsymbol{m}, \texttt{Sign}(\texttt{sk}, \boldsymbol{m})\Big) = \texttt{accept}$

Security Model Terminology

- ▷ **Forger** = Attacker
- ▷ Forger's **goal**
 - Universal Forgery (key-recovery, ...)
 - Existential Forgery
- ▷ Forger's **means**
 - *No*-message
 - Known message
 - Chosen message

I. Fiat-Shamir Paradigm

Fiat-Shamir Paradigm ('86)

Generic method for deriving a signature scheme from any 3-pass identification scheme

- Replacing Verifier's action's by a hash function h
- Secure if the identification scheme is secure against **impersonation** (Abdalla-An-Bellare-Namprempre '02)

Code-based identification scheme (zero-knowledge protocol)

- Stern ('93)
- Veron ('96)

3-Pass Identification Scheme

$$\texttt{Verify}(\texttt{pk}, a, b, c) = \texttt{accept} \quad \texttt{if} \quad \begin{cases} a = \texttt{Commit}(\texttt{sk}, \texttt{nonce}) \\ b = \texttt{Challenge}(\lambda) \\ c = \texttt{Response}(\texttt{sk}, a, b) \end{cases}$$

Fiat-Shamir Paradigm

 \triangleright Signature σ is computed by means of the steps:

- 1. a = Commit(sk, nonce)
- 2. b = h(a, m)
- 3. c = Response(sk, a, b)
- 4. $\sigma = (a, c)$
- \triangleright Verification is done by computing b' = h(a, m) and checking:

$$\texttt{Verify}(\texttt{pk}, a, b', c) = \texttt{accept}$$

- ▷ Efficiency with Stern's protocol:
 - Fast operations
 - Large signatures $\mathcal{O}(n\log n)$ bits
 - Large keys $\mathcal{O}(n^2)$ (fixed rate)

II. Hash-and-Sign Paradigm

Introduction

 \triangleright Deriving a signature scheme from a **public-key encryption** (D_{sk}, E_{pk})

 \triangleright For efficiency, m should be a fixed length bit-string \rightsquigarrow Signing a hash value h(m)

$$\triangleright$$
 Signature of $oldsymbol{m}$ is $\sigma = D_{\mathtt{sk}} \Big(h(oldsymbol{m}) \Big)$

 \triangleright Verification of (\boldsymbol{m},σ') checks if:

$$E_{\mathtt{pk}}(\sigma') = h(\boldsymbol{m})$$

 \triangleright Random Oracle Model (ROM) $\rightsquigarrow h$ is a random function

Niederreiter Cryptosystem

- \triangleright **Public key**: Parity-check matrix \boldsymbol{H} of a binary Goppa code of length n and dimension k
- \triangleright Secret Key: *t*-correcting algorithm ψ
- \triangleright Encryption: $x \rightsquigarrow y = Hx^T$ with x of weight t
- \triangleright **Decryption**: compute $\psi(\boldsymbol{y})$ and recover \boldsymbol{x}

Assumption. $k = n - mt \rightsquigarrow H$ is a $mt \times n$ matrix

Signing with Niederreiter Scheme

ROM implies to perform complete decoding

▷ **But** probability that a randomly drawn vector in $\{0,1\}^n$ is at distance t from a codeword

$$\frac{\binom{n}{t}}{2^{mt}} \ge \frac{\binom{n}{t}}{n^t} \simeq \frac{1}{t!} \rightsquigarrow t \text{ has to be small}$$

Courtois-Finiasz-Sendrier ('01) proposed a method for producing Niederreiter signatures for any hash value:

- Modifying m until it lies within distance t from a codeword
- Efficiency implies to take small $t \ (t \leq 12)$
- Security implies to take large $n \ (n \ge 16)$

CFS Scheme

 $\mathtt{Sign}(oldsymbol{m},\psi)$

- 1. s = h(m);
- 2. i = 0;
- 3. Repeat
- 4. i = i + 1;
- 5. $s_i = h(s, i);$
- 6. $z = \psi(s_i);$
- 7. until $z \neq \emptyset$;
- 8. Return $\sigma = (\boldsymbol{z}, i)$;

CFS Scheme

$$\mathtt{Verify}ig(oldsymbol{m},(oldsymbol{z},i),oldsymbol{H},tig)$$

- 1. s = h(m);
- 2. $s_i = h(s, i)$
- 3. If $\left(oldsymbol{s}_i = oldsymbol{H}oldsymbol{z}^T$ and wt $(oldsymbol{z}) = t
 ight)$ then
- 4. Return accept;
- 5. else
- 6. Return reject;

Performances (80-bit)

Performances with $n = 2^m$ and $k = n - mt$
--

	Signature	Verification	Length	Key size (bits)
(m,t)	$t! t^2 m^3$	t^2m	$tm + \log_2 t$	$tm2^m$
(21, 10)	$2^{41.6}$	$2^{11.0}$	213.3	$2^{28.7}$
(19, 11)	$2^{44.9}$	$2^{11.1}$	212.4	$2^{26.7}$
(15, 12)	$2^{47.7}$	$2^{11.0}$	183.5	$2^{22.4}$

CFS Scheme - Alternative Way

 \triangleright Decoding **any** syndrome by **increasing** the number of errors $t \rightsquigarrow t + \delta$ where

$$\binom{n}{t+\delta} \geqslant 2^{mt}$$

 \triangleright These extra δ errors found through an **exhaustive search**

 \rightsquigarrow Signing time increased by $\binom{n}{\delta}$

▷ **Real gain** when
$$\binom{n}{\delta} < t! \rightsquigarrow$$
 generally $\delta \leq 2$

Security

Key-Recovery Attack

- Recovering the support and the Goppa polynomial
- Best attack performs an exhaustive search on polynomials of degree t and applies Sendrier's SSA algorithm
- Time complexity $\mathcal{O}(2^{mt})$ for polynomials with coefficients in \mathbb{F}_{2^m}
- Existential Forgery under No-Message Attack
 - Syndrome Decoding Problem
- Existential Forgery under Chosen Message Attack
 - "One-out-of-many Syndrome" Decoding Problem

Existential Forgery - Algorithmic Problems

Definition. (Syndrome Decoding Problem)

- Input. H, a syndrome s and weight t
- **Output.** word e of weight $\leq t$ such that $He^T = s$

Definition. ("One-out-of-many Syndrome" Decoding Problem)

- Input. H, a list L of syndromes and weight t
- **Output.** word e of weight $\leq t$ and a syndrome s in L such that $He^T = s$

Existing Approaches

Syndrome Decoding Problem

• Information Set Decoding (ISD) algoritm \rightsquigarrow Time complexity $\mathcal{O}(2^{mt/2})$

"One-out-of-many Syndrome" Decoding Problem (Sendrier '11)

- Johansson and Jönsson's algorithm \rightsquigarrow Time complexity $\mathcal{O}\left(2^{mt/2}\right)$
- Bleinchebacher's Attack \rightsquigarrow Time complexity $\mathcal{O}\left(2^{mt/3}\right)$

Bleinchebacher's Attack - Preliminaries

Based on the Generalized Birthday Paradox Problem

• Input. $f : E \longrightarrow \{0,1\}^r$ and $\ell \ge 1$

• **Output.** Finding
$$x_1, \ldots, x_\ell$$
 in E such that $\bigoplus_{i=1}^{\ell} f(x_i) = 0$

 \triangleright Birthday Paradox $O\left(2^{\frac{r}{2}}\right)$

 \triangleright Wagner ('02) showed that when $\ell = 4$ then time/memory complexity $\mathcal{O}(2^{r/3})$

Bleinchebacher's Attack

 \triangleright Searching for words e_1 , e_2 , e_3 of weight t/3 and h(m) such that

$$He_1^T + He_2^T + He_3^T + h(m) = 0$$

- 1. Build 3 lists L_0 , L_1 , L_2 of $\binom{n}{t/3}$ syndromes of words of weight t/3
- 2. New list L'_0 from L_0 into L_1 by XORing and keeping the resulting syndromes whose first mt/3 positions are zero
- 3. Build one (virtual) list L_3 of $2^{mt/3}$ target hash values
- 4. Merge L_2 and L_3 into L'_1 by XORing and keeping the resulting syndromes whose first mt/3 positions are zero
- 5. Search for a collision between L'_0 and L'_1 over the last 2mt/3 bits

Remark.

- \triangleright At least one solution if $\binom{n}{t/3} \ge 2^{mt/3}$
- \triangleright Time/Memory is about $\mathcal{O}(2^{mt/3})$

Parallel CFS (Finiasz '10)

▷ Reparation of CFS

 \triangleright Sign a message m twice (or *i* times) by means of two (or *i*) different hash functions h_1 and h_2 (or ..., h_i)

 \triangleright For avoiding (trivial) attacks, the two signatures has to be related \rightsquigarrow signing with second version of CFS

Finding e_1 and e_2 of weight at most $t + \delta$ such that

$$\boldsymbol{H}\boldsymbol{e}_1^T=h_1(\boldsymbol{m})$$
 and $\boldsymbol{H}\boldsymbol{e}_2^T=h_2(\boldsymbol{m})$

 \triangleright Time/memory complexity Bleinchebacher's attack becomes $\mathcal{O}(2^{2mt/3})$

m	t	i	Key size	Cost	Size
18	9	3	5.0 MB	$2^{20.0}$	288
19	9	2	10.7 MB	$2^{19.5}$	206
20	8	3	20.0 MB	$2^{16.9}$	294
80-bit security/ $\delta = 2$					

oo-bil security/0

Quasi-Dyadic CFS Signature

- ▷ CFS-like scheme by Barreto-Cayrel-Misoczki-Niebhur ('11)
- Based on binary Quasi-dyadic Goppa codes (Cauchy matrices)
- \triangleright Smaller keys than CFS scheme (reduction by a factor t)

Cauchy Matrix

$$\triangleright \boldsymbol{z} = (z_0, \dots, z_{t-1}) \in \mathbb{F}_{q^m}^t$$
$$\triangleright \boldsymbol{x} = (x_0, \dots, x_{n-1}) \in \mathbb{F}_{q^m}^n \text{ with } x_i \neq z_j$$

Definition. $C(\boldsymbol{z}, \boldsymbol{x})$ is **Cauchy** matrix if

$$C(z, x) \stackrel{\mathsf{def}}{=} \left(\begin{array}{cccc} \frac{1}{z_0 - x_0} & \cdots & \frac{1}{z_0 - x_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{1}{z_{t-1} - x_0} & \cdots & \frac{1}{z_{t-1} - x_{n-1}} \end{array} \right)$$

Proposition. The code defined by the parity-check C(z, x) is a Goppa code whose polynomial is $\gamma(z) = \prod_{i=0}^{t-1} (z - z_i)$

Dyadic Matrix

Definition.

$$\triangleright n = 2^{\ell} \text{ for some integer } \ell \ge 1$$

$$\triangleright \mathbf{h} = (h_0, \dots, h_{n-1}) \text{ from } \mathbb{F}_q^n$$

$$\mathbf{\Delta}(\mathbf{h}) \stackrel{\text{def}}{=} \left(h_{i \oplus j}\right)_{\substack{0 \le i \le n-1 \\ 0 \le j \le n-1}}$$

 $\triangleright \boldsymbol{\Delta}(\boldsymbol{h})$ is called a dyadic matrix

Proposition. (Misoczki-Barreto '09) $\triangleright \Delta(h)$ is a Cauchy matrix **if and only if** \mathbb{F}_q is of characteristic 2 and

$$\frac{1}{h_{i\oplus j}} = \frac{1}{h_j} + \frac{1}{h_i} + \frac{1}{h_0}$$

 \triangleright Furthermore, for any $\theta \in \mathbb{F}_q$, let $z_i \stackrel{\text{def}}{=} 1/h_i + \theta$ and $x_j \stackrel{\text{def}}{=} 1/h_j + 1/h_0 + \theta$ $\Delta(h) = C(z, x)$

Quasi-Dyadic CFS - Key Generation

 \triangleright Choose t and let λ be the smallest integer such that $t \leq 2^{\lambda}$

 $\rightsquigarrow (\texttt{sk},\texttt{pk}) = (\boldsymbol{f},\boldsymbol{G})$

 \triangleright G is a binary $k \times n$ generator matrix with $n = n_0 2^{\lambda}$ and $f \in \mathbb{F}_{2^m}^n$ such that: $Gf^T = 0$

 \triangleright *f* is "almost" the first row of a Dyadic Cauchy matrix

• "Inside-Block" equations: $0 \leq a \leq n_0 - 1$ and $0 \leq i, j \leq 2^{\lambda} - 1$

$$\frac{1}{f_{a2^{\lambda}+i\oplus j}} = \frac{1}{f_{a2^{\lambda}\oplus i}} + \frac{1}{f_{a2^{\lambda}\oplus j}} + \frac{1}{f_{a2^{\lambda}}}$$

• "Between-Block" equations: $0 \leq a \leq n_0 - 1$ and $0 \leq i \leq 2^{\lambda} - 1$

$$\frac{1}{f_{a2^{\lambda}+i}} + \frac{1}{f_{a2^{\lambda}}} = \frac{1}{f_i} + \frac{1}{f_0}$$

Algebraic Attack - Faugère -Najahi-O-Perret-Tillich ('12)

Fact.

$$\triangleright \boldsymbol{G} = \left(egin{array}{c|c|c|c|c|c|c|} \boldsymbol{I}_k & \boldsymbol{R} \end{array}
ight) \qquad \rightsquigarrow n-k=mt$$
 "free" variables

 \triangleright "Inside-Block" relations **imply** that f_i with $0 \leq i \leq 2^{\lambda} - 1$ is **solely** determined by $f_0, f_1, f_2, \ldots, f_{2^{\lambda-1}}$

 \triangleright **One** f_i can be fixed to an **arbitrary** value $\rightsquigarrow f_0$

Assumption. f_1 , f_2 , ..., $f_{2^{\lambda-1}}$ are known $\rightsquigarrow mt - 2^{\lambda}$ "free" variables

$$0 \leqslant i \leqslant 2^{\lambda} - 1: \qquad K_i \stackrel{\mathsf{def}}{=} \frac{1}{f_i} + \frac{1}{f_0}$$

Algebraic Attack

"Between-Block" equations become quadratic equations

$$K_i f_{a2^{\lambda}} f_{a2^{\lambda}+i} + f_{a2^{\lambda}+i} + f_{a2^{\lambda}} = 0$$

- ▷ **Number** of quadratic equations: $\left(\frac{n}{2^{\lambda}} 1\right)(2^{\lambda} 1)$
- ▷ Quasi-Dyadic CFS parameters are such that:
 - $t \leqslant 12 \rightsquigarrow \lambda \leqslant 4$
 - n is large with $n \leq 2^m 2^{\lambda}$

 \rightsquigarrow Number of equations \gg number of variables

Linearization Technique

 \triangleright Each product $f_i f_j$ is replaced by a **new** variable $z_{i,j}$

$$\rightsquigarrow$$
 Total number of new variables $\binom{mt - 2^{\lambda} + 2}{2}$

> At least one solution to the linearized system if:

$$\left(\frac{n}{2^{\lambda}} - 1\right)\left(2^{\lambda} - 1\right) \geqslant \binom{mt - 2^{\lambda} + 2}{2}$$

All the proposed parameters satisfy this condition

Example.

- $t = 8 \rightsquigarrow m \ge 13$
- $t = 10 \rightsquigarrow m \ge 13$
- $t = 12 \rightsquigarrow m \ge 14$

Complexity of the Attack

 \triangleright Exhaustive search for determining each $K_i \rightsquigarrow \mathcal{O}(2^{\lambda m})$

 \triangleright Linear algebra $\mathcal{O}\left((mt)^{2\omega}\right)$ where $2\leqslant\omega\leqslant3$

$(m,t)^1$	Exhaustive search ($\lambda = 4$)	Linear algebra ($\omega = 2.376$)
(21, 10)	2^{84}	2^{34}
(19, 11)	2^{76}	2^{34}
(15, 12)	2^{60}	2^{33}
	1	•

¹ 80-bit security

> **Open issue.** Improving the exhaustive search part (still in progress)

Signing without Decoding (Kabatianskii-Krouk-Smeets '97)

▷ Possible if one is able to find:

- Signing function $\Sigma: \mathbf{m} \mapsto \sigma$ of weight t
- Verification function χ such that $\chi(\boldsymbol{m}) = \boldsymbol{H} \sigma^T$

▷ It would allow to sign with random linear codes

 \triangleright KKS proposed linear maps for Σ and χ

$$\Sigma: oldsymbol{m} \longmapsto oldsymbol{m} oldsymbol{G}$$

 $\chi: oldsymbol{m} \longmapsto oldsymbol{F} oldsymbol{m}^T$

Assumption. G generates a linear code whose codewords v are such that:

$$t_1 \leqslant \mathsf{wt}\,(v) \leqslant t_2$$

KKS Scheme - Key Generation

- ▷ Security parameter $\rightsquigarrow \delta$, k, n, r, N such that k < n < r < N and $0 < \delta \ll \frac{n}{2}$
- Pick at random
 - $k \times n$ matrix G
 - $J \subset \{1, \dots, N\}$ of cardinality n
 - $r \times N$ matrix \boldsymbol{H}

 $\triangleright \text{ Compute } r \times k \text{ matrix } \boldsymbol{F} \stackrel{\text{def}}{=} \boldsymbol{H}(J)\boldsymbol{G}^{T}$ $\triangleright \text{ Set } t_{1} \stackrel{\text{def}}{=} \frac{n}{2} - \delta \text{ and } t_{2} \stackrel{\text{def}}{=} \frac{n}{2} + \delta$ $\text{sk} = (J, \boldsymbol{G}) \text{ and } \text{pk} = (\boldsymbol{H}, \boldsymbol{F}, t_{1}, t_{2})$

KKS Scheme

$$\triangleright \sigma \leftarrow \text{Sign}(\boldsymbol{m})$$
: Compute σ of $\{1, 0\}^N$ such that:

 $\sigma_J = \boldsymbol{m} \boldsymbol{G}$ and $\sigma_{[1...N]\setminus J} = 0$

 $\triangleright \texttt{Verify}({m m},\sigma)$

$$\boldsymbol{H}\sigma^{T} = \boldsymbol{F}\boldsymbol{m}^{T}$$
 and $t_{1} \leqslant \mathsf{wt}\left(\sigma\right) \leqslant t_{2}$

Preliminary Observations

Notation.

• $\mathscr{S} \stackrel{\text{def}}{=} \left\{ \text{Valid KKS message/signature } (\boldsymbol{m}, \sigma) \right\}$

•
$$\mathscr{C}_{\text{public}} \stackrel{\text{def}}{=} \left\{ \boldsymbol{c} \in \{0,1\}^{k+N} : \left(\begin{array}{c|c} \boldsymbol{F} & \boldsymbol{H} \end{array} \right) \boldsymbol{c}^T = 0 \right\}$$

Fact.

- 1. \mathscr{S} is a linear subspace of $\mathscr{C}_{\mathsf{public}}$ because of $\boldsymbol{F}\boldsymbol{m}^T = \boldsymbol{H}\sigma^T$
- 2. \mathscr{S} is of dimension k

Security of KKS Scheme

1. Basis of $\mathscr{S} \rightsquigarrow$ universal forgery

```
KKS scheme is a \ell\text{-time} signature scheme with \ell < k
```

2. If
$$\sigma_1, \ldots, \sigma_\ell$$
 are ℓ signatures then $\bigcup_{i=0}^{\ell} \operatorname{support}(\sigma_j) \subset J$

Proposition. $\sigma_1, \ldots, \sigma_\ell$ are codewords of weight of t drawn uniformly and independently

$$\mathbb{E}\left[\left|\bigcup_{i=0}^{\ell} \operatorname{support}(\sigma_j)\right|\right] = n\left(1 - \left(1 - \frac{t}{n}\right)^{\ell}\right)$$

Remark. $t \simeq \frac{n}{2} \rightsquigarrow n(1 - \frac{1}{2^{\ell}})$ positions of J are known

Corollary. KKS is one-time signature

"Noisy" KKS (Barreto-Misoczki-Simplicio '11)

Assumption. h is public hash function

 $\triangleright \ (\sigma, \boldsymbol{v}) \gets \mathtt{Sign}(\boldsymbol{m})$

- Pick at random ${\boldsymbol e} \in \{0,1\}^N$ such that ${\rm wt}\,({\boldsymbol e})=n$
- Compute $\boldsymbol{v} \stackrel{\mathsf{def}}{=} h(\boldsymbol{m}, \boldsymbol{H}\boldsymbol{e}^T)$
- Compute $\boldsymbol{y} \in \{0,1\}^N$ such that:

$$oldsymbol{y}_J = oldsymbol{v}oldsymbol{G}$$
 and $oldsymbol{y}_{[1...N]\setminus J} = 0$

• $\sigma \stackrel{\text{def}}{=} y + e$

 $\triangleright \texttt{Verify}(\boldsymbol{v}, \sigma)$ checks whether

$$h(\boldsymbol{m},\boldsymbol{H}\boldsymbol{\sigma}^T+\boldsymbol{F}\boldsymbol{v}^T)=\boldsymbol{v}\qquad\text{and}\qquad \mathrm{wt}\left(\boldsymbol{\sigma}\right)\leqslant 2n$$

Further Observations

Fact.

- 1. $\mathscr{S}_{[k+1...k+N]\setminus J} = \{0\}$
- 2. \mathscr{S}_J is a linear code of dimension k containing low-weight words $\simeq n/2$ with

$$n/2 \ll N+k$$

Corollary.

- \triangleright Recovering $\mathscr S$ by applying algorithms searching for low-weight codewords
- $\triangleright \quad \boldsymbol{F} = \boldsymbol{H}(J)\boldsymbol{G}^T \rightsquigarrow \mathscr{C}_{\text{public}} \text{ is not a random code}$

Universal Forgery under No-Message Attack (O-Tillich '11) $\begin{pmatrix} F & H \end{pmatrix} \rightsquigarrow \mathscr{S} = \text{Secret}$

 \triangleright Dumer's ISD algorithm: ℓ, p with p very small

- Random $I \subset \{1, \dots, N+k\}$ of cardinality $k+K+\ell$
- Outputs $oldsymbol{x}$ of weight $\simeq n/2$ such that $oldsymbol{x}_I$ is of weight 2p
- > Analysis shows that the attack performs **better** when
 - $I \subset \{k+1, \dots, N+k\}$
 - Rates of \mathscr{S} and $\mathscr{C}_{\text{public}}$ are close
 - *n* is small
- \triangleright **Bootstrapping** Second codeword y is found **more easily** from x
 - Take at random $I \subset \{k+1, \ldots, N+k\} \setminus \mathsf{support}(\boldsymbol{x})$

Open issue. Finding "good" parameters immune against this attack

Instead of Correcting?

 \triangleright "Hash-and-Sign" Paradigm considers $h({\bm m})$ as a "noisy" version of signature $\rightsquigarrow h(m) \text{ should not be changed}$

CFS scheme simulates complete decoding

 $\rightsquigarrow h(m)$ has to be changed

▷ With J.P. Tillich we propose to rephrase the problem in the framework of Rate-Distortion Theory (also called lossy source coding)

III. "Lossy Source Coding" Signatures

Rate-Distorsion Theory

▷ Aiming at representing/estimating/quantizing a source (= random variable $X(\omega)$) taking infinite numbers of values by means of a finite number N of values

$$X(\omega) \in \mathcal{X} \rightsquigarrow \mathcal{R}(X) \stackrel{\mathsf{def}}{=} \left\{ \hat{X}(\omega_1), \dots, \hat{X}(\omega_N) \right\}$$

Example.

- Representation of real numbers with a fixed number of bits
- Lossy-data compression

 \triangleright Representation cannot be done exactly \leadsto maximum distorsion D

$$\forall \omega: \quad \mathsf{dist}\Big(\hat{X}(\omega), X(\omega)\Big) \leqslant D$$

 \triangleright Choosing N optimal values

 $X(\omega) \rightsquigarrow$ Find the **closest** point in $\mathcal{R}(X)$

Polar Codes (Arikan '07)

 $\triangleright \text{ Length } N=2^n$

Encoding based on Fast Fourier Transform architecture

 \triangleright **Encoding**/**Decoding** can be made in $\mathcal{O}(N \log N)$ operations

Capacity-achieving codes for any binary memoryless channel

▷ **Optimal** for lossy source coding of a binary symetric source (Korada '10)

Encoding with Polar Codes (I)

Example. n = 3

▷ Which code do we get?

Encoding with Polar Codes (II)

Extended Hamming code [8, 4, 4] defined by the generator matrix:

$$\boldsymbol{G} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

 \rightsquigarrow Which entries have to be kept zero?

"Polarization" Phenomenon

▷ General rule For a code of length N and dimension K then set to 0 the N - K worst positions

▷ **Entries** set to zero are called "frozen" (red)

Using Polar Codes in Cryptography

> Adding diversity

• Changing the alphabet from binary to $GF(4) = \{0, 1, w, w^2\}$

• Not considering only one transform $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ but a set of transforms

$$\left\{ \left(\begin{array}{ccc} 1 & w \\ w & 1 \end{array}\right), \left(\begin{array}{ccc} w^2 & w \\ 1 & 1 \end{array}\right), \left(\begin{array}{ccc} w^2 & 1 \\ w & 1 \end{array}\right) \right\}$$

• Randomly picking 2^{n-1} transforms at each level i of $\{1, \ldots, n\}$

 \triangleright **Expanding** from GF(4) to $GF(2) \rightsquigarrow$ **binary** linear code of length and dimension **twice** as large

Masking the structure like McEliece

Estimating Minimum Distance

Proposition. Minimum distance of a polar code with information set containing only integers whose binary representation does not contains less than ℓ zeros is at least 2^{ℓ} .

- \triangleright **Proposed parameters** (over GF(4))
 - N = 4,096, K = 1,255, $\ell = 7 \rightsquigarrow$ minimum distance ≥ 128
 - 80-bit security (Peters' q-ary version of ISD)

Binary Distorsion Values (4,000,000 **tests)**

Maximum distorsion $\leqslant 2,268$

Performances

- \triangleright Binary code of length 8,182 and dimension 2,510
- \triangleright Maximum distorsion $\leq 2,268 \rightsquigarrow 1400$ -bit security (ISD for binary codes)
- \triangleright Average time for one signature: \simeq 4ms
- \triangleright Key size: 6.5 Mbyte