Code-Based Cryptography Workshop 2012

$$
9 \text { - } 11 \text { May 2012, Lyngby, Denmark }
$$

On the Design of Code-Based Signatures

Ayoub Otmani

ayoub.otmani@unicaen.fr GREYC

Outline

1. Fiat-Shamir paradigm

2. Hash-and-Sign paradigm
3. "Lossy Source Coding" Signatures (joint work with J.P. Tillich)

About this Lecture ...

\triangleright Focus on "classical" signatures

- Authentication
- Integrity
- Non-repudiation
\triangleright "Sophisticated" signatures are not treated:
Ring signature, threshold ring signature, blind signature, undeniable signature, ...

Signature Scheme

Definition. A signature scheme is given by three algorithms:
$\triangleright(\mathrm{sk}, \mathrm{pk}) \longleftarrow \operatorname{KeyGen}(\lambda)$ where λ is a security parameter
$\triangleright \sigma \longleftarrow \operatorname{Sign}($ sk, $\boldsymbol{m})$ where $\boldsymbol{m} \in\{0,1\}^{*}$
$\triangleright b \longleftarrow \operatorname{Verify}(\mathrm{pk}, \boldsymbol{m}, \sigma)$ where $b \in\{$ accept, reject $\}$ and such that:

$$
\operatorname{Verify}(\mathrm{pk}, \boldsymbol{m}, \operatorname{Sign}(\mathrm{sk}, \boldsymbol{m}))=\operatorname{accept}
$$

Security Model Terminology

\triangleright Forger $=$ Attacker
\triangleright Forger's goal

- Universal Forgery (key-recovery, ...)
- Existential Forgery
\triangleright Forger's means
- No-message
- Known message
- Chosen message

I. Fiat-Shamir Paradigm

Fiat-Shamir Paradigm ('86)

\triangleright Generic method for deriving a signature scheme from any 3-pass identification scheme

- Replacing Verifier's action's by a hash function h
- Secure if the identification scheme is secure against impersonation (Abdalla-An-Bellare-Namprempre '02)
\triangleright Code-based identification scheme (zero-knowledge protocol)
- Stern ('93)
- Veron ('96)

3-Pass Identification Scheme

\mathbb{P}		\mathbb{V}
	$\mathrm{a}=$ Commit(sk, nonce)	
2.	-	
	$\mathbf{b}=$ Challenge (λ, nonce $)$	
3.	\longleftarrow	
	$\mathrm{c}=$ Response(sk, a, b)	
4.	\longrightarrow	
5.		$\operatorname{Verify}(\mathrm{pk}, a, b, c)$

$$
\operatorname{Verify}(\mathrm{pk}, a, b, c)=\text { accept } \quad \text { if } \quad\left\{\begin{array}{l}
a=\operatorname{Commit}(\mathrm{sk}, \text { nonce }) \\
b=\operatorname{Challenge}(\lambda) \\
c=\operatorname{Response}(\mathrm{sk}, a, b)
\end{array}\right.
$$

Fiat-Shamir Paradigm

\triangleright Signature σ is computed by means of the steps:

1. $a=$ Commit(sk, nonce)
2. $b=h(a, \boldsymbol{m})$
3. $c=$ Response(sk, $a, b)$
4. $\sigma=(a, c)$
\triangleright Verification is done by computing $b^{\prime}=h(a, \boldsymbol{m})$ and checking:

$$
\operatorname{Verify}\left(\mathrm{pk}, a, b^{\prime}, c\right)=\operatorname{accept}
$$

\triangleright Efficiency with Stern's protocol:

- Fast operations
- Large signatures $\mathcal{O}(n \log n)$ bits
- Large keys $\mathcal{O}\left(n^{2}\right)$ (fixed rate)
II. Hash-and-Sign Paradigm

Introduction

\triangleright Deriving a signature scheme from a public-key encryption $\left(D_{\mathrm{sk}}, E_{\mathrm{pk}}\right)$
\triangleright For efficiency, m should be a fixed length bit-string
\rightsquigarrow Signing a hash value $h(\boldsymbol{m})$
\triangleright Signature of \boldsymbol{m} is $\sigma=D_{\text {sk }}(h(\boldsymbol{m}))$
\triangleright Verification of ($\boldsymbol{m}, \sigma^{\prime}$) checks if:

$$
E_{\mathrm{pk}}\left(\sigma^{\prime}\right)=h(\boldsymbol{m})
$$

\triangleright Random Oracle Model (ROM) $\rightsquigarrow h$ is a random function

Niederreiter Cryptosystem

\triangleright Public key: Parity-check matrix \boldsymbol{H} of a binary Goppa code of length n and dimension k
\triangleright Secret Key: t-correcting algorithm ψ
\triangleright Encryption: $\boldsymbol{x} \rightsquigarrow \boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}^{T}$ with \boldsymbol{x} of weight t
\triangleright Decryption: compute $\psi(\boldsymbol{y})$ and recover \boldsymbol{x}

Assumption. $k=n-m t \rightsquigarrow \boldsymbol{H}$ is a $m t \times n$ matrix

Signing with Niederreiter Scheme

\triangleright ROM implies to perform complete decoding
\triangleright But probability that a randomly drawn vector in $\{0,1\}^{n}$ is at distance t from a codeword

$$
\frac{\binom{n}{t}}{2^{m t}} \geqslant \frac{\binom{n}{t}}{n^{t}} \simeq \frac{1}{t!} \rightsquigarrow t \text { has to be small }
$$

\triangleright Courtois-Finiasz-Sendrier ('01) proposed a method for producing Niederreiter signatures for any hash value:

- Modifying \boldsymbol{m} until it lies within distance t from a codeword
- Efficiency implies to take small $t(t \leqslant 12)$
- Security implies to take large $n(n \geqslant 16)$

CFS Scheme

$\operatorname{Sign}(\boldsymbol{m}, \psi)$

1. $\boldsymbol{s}=h(\boldsymbol{m})$;
2. $i=0$;
3. Repeat
4. $\quad i=i+1$;
5. $s_{i}=h(s, i)$;
6. $\quad \boldsymbol{z}=\psi\left(s_{i}\right)$;
7. until $z \neq \emptyset$;
8. Return $\sigma=(\boldsymbol{z}, i)$;

CFS Scheme

$\operatorname{Verify}(\boldsymbol{m},(\boldsymbol{z}, i), \boldsymbol{H}, t)$

1. $\boldsymbol{s}=h(\boldsymbol{m})$;
2. $s_{i}=h(s, i)$
3. If $\left(s_{i}=\boldsymbol{H} \boldsymbol{z}^{T}\right.$ and $\left.w t(\boldsymbol{z})=t\right)$ then
4. Return accept;
5. else
6. Return reject;

Performances (80-bit)

Performances with $n=2^{m}$ and $k=n-m t$

	Signature	Verification	Length	Key size (bits)
(m, t)	$t!t^{2} m^{3}$	$t^{2} m$	$t m+\log _{2} t$	$t m 2^{m}$
$(21,10)$	$2^{41.6}$	$2^{11.0}$	213.3	$2^{28.7}$
$(19,11)$	$2^{44.9}$	$2^{11.1}$	212.4	$2^{26.7}$
$(15,12)$	$2^{47.7}$	$2^{11.0}$	183.5	$2^{22.4}$

CFS Scheme - Alternative Way

\triangleright Decoding any syndrome by increasing the number of errors $t \rightsquigarrow t+\delta$ where

$$
\binom{n}{t+\delta} \geqslant 2^{m t}
$$

\triangleright These extra δ errors found through an exhaustive search
\rightsquigarrow Signing time increased by $\binom{n}{\delta}$
\triangleright Real gain when $\binom{n}{\delta}<t!\rightsquigarrow$ generally $\delta \leqslant 2$

Security

\triangleright Key-Recovery Attack

- Recovering the support and the Goppa polynomial
- Best attack performs an exhaustive search on polynomials of degree t and applies Sendrier's SSA algorithm
- Time complexity $\mathcal{O}\left(2^{m t}\right)$ for polynomials with coefficients in $\mathbb{F}_{2^{m}}$
\triangleright Existential Forgery under No-Message Attack
- Syndrome Decoding Problem
\triangleright Existential Forgery under Chosen Message Attack
- "One-out-of-many Syndrome" Decoding Problem

Existential Forgery - Algorithmic Problems

Definition. (Syndrome Decoding Problem)

- Input. \boldsymbol{H}, a syndrome s and weight t
- Output. word \boldsymbol{e} of weight $\leqslant t$ such that $\boldsymbol{H} \boldsymbol{e}^{T}=s$

Definition. ("One-out-of-many Syndrome" Decoding Problem)

- Input. \boldsymbol{H}, a list L of syndromes and weight t
- Output. word \boldsymbol{e} of weight $\leqslant t$ and a syndrome s in L such that $\boldsymbol{H} \boldsymbol{e}^{T}=s$

Existing Approaches

\triangleright Syndrome Decoding Problem

- Information Set Decoding (ISD) algoritm \rightsquigarrow Time complexity $\mathcal{O}\left(2^{m t / 2}\right)$
\triangleright "One-out-of-many Syndrome" Decoding Problem (Sendrier '11)
- Johansson and Jönsson's algorithm \rightsquigarrow Time complexity $\mathcal{O}\left(2^{m t / 2}\right)$
- Bleinchebacher's Attack \rightsquigarrow Time complexity $\mathcal{O}\left(2^{m t / 3}\right)$

Bleinchebacher's Attack - Preliminaries

\triangleright Based on the Generalized Birthday Paradox Problem

- Input. $f: E \longrightarrow\{0,1\}^{r}$ and $\ell \geqslant 1$
- Output. Finding x_{1}, \ldots, x_{ℓ} in E such that $\bigoplus_{i=1}^{\ell} f\left(x_{i}\right)=0$
\triangleright Birthday Paradox $O\left(2^{\frac{r}{2}}\right)$
\triangleright Wagner ('02) showed that when $\ell=4$ then time/memory complexity $\mathcal{O}\left(2^{r / 3}\right)$

Bleinchebacher's Attack

\triangleright Searching for words $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ of weight $t / 3$ and $h(\boldsymbol{m})$ such that

$$
\boldsymbol{H} \boldsymbol{e}_{1}^{T}+\boldsymbol{H} \boldsymbol{e}_{2}^{T}+\boldsymbol{H} \boldsymbol{e}_{3}^{T}+h(\boldsymbol{m})=0
$$

1. Build 3 lists L_{0}, L_{1}, L_{2} of $\binom{n}{t / 3}$ syndromes of words of weight $t / 3$
2. New list L_{0}^{\prime} from L_{0} into L_{1} by XORing and keeping the resulting syndromes whose first $m t / 3$ positions are zero
3. Build one (virtual) list L_{3} of $2^{m t / 3}$ target hash values
4. Merge L_{2} and L_{3} into L_{1}^{\prime} by XORing and keeping the resulting syndromes whose first $m t / 3$ positions are zero
5. Search for a collision between L_{0}^{\prime} and L_{1}^{\prime} over the last $2 m t / 3$ bits

Remark.

\triangleright At least one solution if $\binom{n}{t / 3} \geqslant 2^{m t / 3}$
\triangleright Time/Memory is about $\mathcal{O}\left(2^{m t / 3}\right)$

Parallel CFS (Finiasz '10)

\triangleright Reparation of CFS
\triangleright Sign a message \boldsymbol{m} twice (or i times) by means of two (or i) different hash functions h_{1} and $h_{2}\left(\right.$ or $\left.\ldots, h_{i}\right)$
\triangleright For avoiding (trivial) attacks, the two signatures has to be related \rightsquigarrow signing with second version of CFS

Finding \boldsymbol{e}_{1} and \boldsymbol{e}_{2} of weight at most $t+\delta$ such that

$$
\boldsymbol{H} \boldsymbol{e}_{1}^{T}=h_{1}(\boldsymbol{m}) \text { and } \boldsymbol{H} \boldsymbol{e}_{2}^{T}=h_{2}(\boldsymbol{m})
$$

\triangleright Time/memory complexity Bleinchebacher's attack becomes $\mathcal{O}\left(2^{2 m t / 3}\right)$

m	t	i	Key size	Cost	Size
18	9	3	5.0 MB	$2^{20.0}$	288
19	9	2	10.7 MB	$2^{19.5}$	206
20	8	3	20.0 MB	$2^{16.9}$	294
80-bit security $/ \delta=2$					

Quasi-Dyadic CFS Signature

\triangleright CFS-like scheme by Barreto-Cayrel-Misoczki-Niebhur ('11)
\triangleright Based on binary Quasi-dyadic Goppa codes (Cauchy matrices)
\triangleright Smaller keys than CFS scheme (reduction by a factor t)

Cauchy Matrix

$\triangleright \boldsymbol{z}=\left(z_{0}, \ldots, z_{t-1}\right) \in \mathbb{F}_{q^{m}}^{t}$
$\triangleright \boldsymbol{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{F}_{q^{m}}^{n}$ with $x_{i} \neq z_{j}$

Definition. $C(\boldsymbol{z}, \boldsymbol{x})$ is Cauchy matrix if

$$
\boldsymbol{C}(\boldsymbol{z}, \boldsymbol{x}) \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\frac{1}{z_{0}-x_{0}} & \cdots & \frac{1}{z_{0}-x_{n-1}} \\
\vdots & \ddots & \vdots \\
\frac{1}{z_{t-1}-x_{0}} & \cdots & \frac{1}{z_{t-1}-x_{n-1}}
\end{array}\right)
$$

Proposition. The code defined by the parity-check $\boldsymbol{C}(\boldsymbol{z}, \boldsymbol{x})$ is a Goppa code whose polynomial is $\gamma(z)=\prod_{i=0}^{t-1}\left(z-z_{i}\right)$

Dyadic Matrix

Definition.

$\triangleright n=2^{\ell}$ for some integer $\ell \geqslant 1$
$\triangleright \boldsymbol{h}=\left(h_{0}, \ldots, h_{n-1}\right)$ from \mathbb{F}_{q}^{n}

$$
\boldsymbol{\Delta}(\boldsymbol{h}) \stackrel{\text { def }}{=}\left(h_{i \oplus j}\right)_{\substack{0 \leqslant i \leqslant n-1 \\ 0 \leqslant j \leqslant n-1}}
$$

$\triangleright \boldsymbol{\Delta}(\boldsymbol{h})$ is called a dyadic matrix

Proposition. (Misoczki-Barreto '09)
$\triangleright \boldsymbol{\Delta}(\boldsymbol{h})$ is a Cauchy matrix if and only if \mathbb{F}_{q} is of characteristic 2 and

$$
\frac{1}{h_{i \oplus j}}=\frac{1}{h_{j}}+\frac{1}{h_{i}}+\frac{1}{h_{0}}
$$

\triangleright Furthermore, for any $\theta \in \mathbb{F}_{q}$, let $z_{i} \stackrel{\text { def }}{=} 1 / h_{i}+\theta$ and $x_{j} \stackrel{\text { def }}{=} 1 / h_{j}+1 / h_{0}+\theta$

$$
\Delta(h)=C(z, x)
$$

Quasi-Dyadic CFS - Key Generation

\triangleright Choose t and let λ be the smallest integer such that $t \leqslant 2^{\lambda}$

$$
\rightsquigarrow(\mathrm{sk}, \mathrm{pk})=(\boldsymbol{f}, \boldsymbol{G})
$$

$\triangleright \boldsymbol{G}$ is a binary $k \times n$ generator matrix with $n=n_{0} 2^{\lambda}$ and $\boldsymbol{f} \in \mathbb{F}_{2^{m}}^{n}$ such that:

$$
\boldsymbol{G} \boldsymbol{f}^{T}=0
$$

$\triangleright f$ is "almost" the first row of a Dyadic Cauchy matrix

- "Inside-Block" equations: $0 \leqslant a \leqslant n_{0}-1$ and $0 \leqslant i, j \leqslant 2^{\lambda}-1$

$$
\frac{1}{f_{a 2^{\lambda}+i \oplus j}}=\frac{1}{f_{a 2^{\lambda} \oplus i}}+\frac{1}{f_{a 2^{\lambda} \oplus j}}+\frac{1}{f_{a 2^{\lambda}}}
$$

- "Between-Block" equations: $0 \leqslant a \leqslant n_{0}-1$ and $0 \leqslant i \leqslant 2^{\lambda}-1$

$$
\frac{1}{f_{a 2^{\lambda}+i}}+\frac{1}{f_{a 2^{\lambda}}}=\frac{1}{f_{i}}+\frac{1}{f_{0}}
$$

Algebraic Attack - Faugère -Najahi-O-Perret-Tillich ('12)

Fact.
$\triangleright \boldsymbol{G}=\left(\boldsymbol{I}_{k} \mid \boldsymbol{R}\right) \quad \rightsquigarrow n-k=m t$ "free" variables
\triangleright "Inside-Block" relations imply that f_{i} with $0 \leqslant i \leqslant 2^{\lambda}-1$ is solely determined by $f_{0}, f_{1}, f_{2}, \ldots, f_{2^{\lambda-1}}$
\triangleright One f_{i} can be fixed to an arbitrary value $\rightsquigarrow f_{0}$

Assumption. $f_{1}, f_{2}, \ldots, f_{2^{\lambda-1}}$ are known $\rightsquigarrow m t-2^{\lambda}$ "free" variables

$$
0 \leqslant i \leqslant 2^{\lambda}-1: \quad K_{i} \stackrel{\text { def }}{=} \frac{1}{f_{i}}+\frac{1}{f_{0}}
$$

Algebraic Attack

\triangleright "Between-Block" equations become quadratic equations

$$
K_{i} f_{a 2^{\lambda}} f_{a 2^{\lambda}+i}+f_{a 2^{\lambda}+i}+f_{a 2^{\lambda}}=0
$$

\triangleright Number of quadratic equations: $\left(\frac{n}{2^{\lambda}}-1\right)\left(2^{\lambda}-1\right)$
\triangleright Quasi-Dyadic CFS parameters are such that:

- $t \leqslant 12 \rightsquigarrow \lambda \leqslant 4$
- n is large with $n \leqslant 2^{m}-2^{\lambda}$
\rightsquigarrow Number of equations \gg number of variables

Linearization Technique

\triangleright Each product $f_{i} f_{j}$ is replaced by a new variable $z_{i, j}$

$$
\rightsquigarrow \text { Total number of new variables }\binom{m t-2^{\lambda}+2}{2}
$$

\triangleright At least one solution to the linearized system if:

$$
\left(\frac{n}{2^{\lambda}}-1\right)\left(2^{\lambda}-1\right) \geqslant\binom{ m t-2^{\lambda}+2}{2}
$$

\triangleright All the proposed parameters satisfy this condition

Example.

- $t=8 \rightsquigarrow m \geqslant 13$
- $t=10 \rightsquigarrow m \geqslant 13$
- $t=12 \rightsquigarrow m \geqslant 14$

Complexity of the Attack

\triangleright Exhaustive search for determining each $K_{i} \rightsquigarrow \mathcal{O}\left(2^{\lambda m}\right)$
\triangleright Linear algebra $\mathcal{O}\left((m t)^{2 \omega}\right)$ where $2 \leqslant \omega \leqslant 3$

$(m, t)^{1}$	Exhaustive search $(\lambda=4)$	Linear algebra $(\omega=2.376)$
$(21,10)$	2^{84}	2^{34}
$(19,11)$	2^{76}	2^{34}
$(15,12)$	2^{60}	2^{33}
	$1_{\text {80-bit security }}$	

\triangleright Open issue. Improving the exhaustive search part (still in progress)

Signing without Decoding (Kabatianskii-Krouk-Smeets '97)

\triangleright Possible if one is able to find:

- Signing function $\Sigma: \boldsymbol{m} \longmapsto \sigma$ of weight t
- Verification function χ such that $\chi(\boldsymbol{m})=\boldsymbol{H} \sigma^{T}$
\triangleright It would allow to sign with random linear codes
\triangleright KKS proposed linear maps for Σ and χ

$$
\begin{gathered}
\Sigma: \boldsymbol{m} \longmapsto \boldsymbol{m} \boldsymbol{G} \\
\chi: \boldsymbol{m} \longmapsto \boldsymbol{F} \boldsymbol{m}^{T}
\end{gathered}
$$

Assumption. \boldsymbol{G} generates a linear code whose codewords \boldsymbol{v} are such that:

$$
t_{1} \leqslant \mathrm{wt}(v) \leqslant t_{2}
$$

KKS Scheme - Key Generation

\triangleright Security parameter $\rightsquigarrow \delta, k, n, r, N$ such that $k<n<r<N$ and $0<\delta \ll \frac{n}{2}$
\triangleright Pick at random

- $k \times n$ matrix \boldsymbol{G}
- $J \subset\{1, \ldots, N\}$ of cardinality n
- $r \times N$ matrix \boldsymbol{H}
\triangleright Compute $r \times k$ matrix $\boldsymbol{F} \stackrel{\text { def }}{=} \boldsymbol{H}(J) \boldsymbol{G}^{T}$
\triangleright Set $t_{1} \stackrel{\text { def }}{=} \frac{n}{2}-\delta$ and $t_{2} \stackrel{\text { def }}{=} \frac{n}{2}+\delta$

$$
\mathrm{sk}=(J, \boldsymbol{G}) \quad \text { and } \quad \mathrm{pk}=\left(\boldsymbol{H}, \boldsymbol{F}, t_{1}, t_{2}\right)
$$

KKS Scheme

$\triangleright \sigma \leftarrow \operatorname{Sign}(\boldsymbol{m})$: Compute σ of $\{1,0\}^{N}$ such that:

$$
\sigma_{J}=m \boldsymbol{m} \quad \text { and } \quad \sigma_{[1 \ldots N] \backslash J}=0
$$

$\triangleright \operatorname{Verify}(\boldsymbol{m}, \sigma)$

$$
\boldsymbol{H} \sigma^{T}=\boldsymbol{F} \boldsymbol{m}^{T} \text { and } t_{1} \leqslant w t(\sigma) \leqslant t_{2}
$$

Preliminary Observations

Notation.

- $\mathscr{S} \stackrel{\text { def }}{=}\{$ Valid KKS message/signature $(\boldsymbol{m}, \sigma)\}$
- $\mathscr{C}_{\text {public }} \xlongequal{\text { def }}\left\{\boldsymbol{c} \in\{0,1\}^{k+N}:(\boldsymbol{F} \mid \boldsymbol{H}) \boldsymbol{c}^{T}=0\right\}$

Fact.

1. \mathscr{S} is a linear subspace of $\mathscr{C}_{\text {public }}$ because of $\boldsymbol{F} \boldsymbol{m}^{T}=\boldsymbol{H} \sigma^{T}$
2. \mathscr{S} is of dimension k

Security of KKS Scheme

1. Basis of $\mathscr{S} \rightsquigarrow$ universal forgery

KKS scheme is a ℓ-time signature scheme with $\ell<k$
2. If $\sigma_{1}, \ldots, \sigma_{\ell}$ are ℓ signatures then $\bigcup_{i=0}^{\ell} \operatorname{support}\left(\sigma_{j}\right) \subset J$

Proposition. $\sigma_{1}, \ldots, \sigma_{\ell}$ are codewords of weight of t drawn uniformly and independently

$$
\mathbb{E}\left[\left|\bigcup_{i=0}^{\ell} \operatorname{support}\left(\sigma_{j}\right)\right|\right]=n\left(1-\left(1-\frac{t}{n}\right)^{\ell}\right)
$$

Remark. $t \simeq \frac{n}{2} \rightsquigarrow n\left(1-\frac{1}{2^{\ell}}\right)$ positions of J are known

Corollary. KKS is one-time signature

"Noisy" KKS (Barreto-Misoczki-Simplicio '11)

Assumption. h ispublic hash function
$\triangleright(\sigma, \boldsymbol{v}) \leftarrow \operatorname{Sign}(\boldsymbol{m})$

- Pick at random $\boldsymbol{e} \in\{0,1\}^{N}$ such that wt $(\boldsymbol{e})=n$
- Compute $\boldsymbol{v} \stackrel{\text { def }}{=} h\left(\boldsymbol{m}, \boldsymbol{H} \boldsymbol{e}^{T}\right)$
- Compute $\boldsymbol{y} \in\{0,1\}^{N}$ such that:

$$
\boldsymbol{y}_{J}=\boldsymbol{v} \boldsymbol{G} \quad \text { and } \quad \boldsymbol{y}_{[1 \ldots N] \backslash J}=0
$$

- $\sigma \stackrel{\text { def }}{=} \boldsymbol{y}+\boldsymbol{e}$
$\triangleright \operatorname{Verify}(\boldsymbol{v}, \sigma)$ checks whether

$$
h\left(\boldsymbol{m}, \boldsymbol{H} \sigma^{T}+\boldsymbol{F} \boldsymbol{v}^{T}\right)=\boldsymbol{v} \quad \text { and } \quad \text { wt }(\sigma) \leqslant 2 n
$$

Further Observations

Fact.

1. $\mathscr{S}_{[k+1 \ldots k+N] \backslash J}=\{0\}$
2. \mathscr{S}_{J} is a linear code of dimension k containing low-weight words $\simeq n / 2$ with

$$
n / 2 \ll N+k
$$

Corollary.

\triangleright Recovering \mathscr{S} by applying algorithms searching for low-weight codewords
$\triangleright \boldsymbol{F}=\boldsymbol{H}(J) \boldsymbol{G}^{T} \rightsquigarrow \mathscr{C}_{\text {public }}$ is not a random code

Universal Forgery under No-Message Attack (O-Tillich '11)

$$
(\boldsymbol{F} \mid \boldsymbol{H}) \rightsquigarrow \mathscr{S}=\text { Secret }
$$

\triangleright Dumer's ISD algorithm: ℓ, p with p very small

- Random $I \subset\{1, \ldots, N+k\}$ of cardinality $k+K+\ell$
- Outputs \boldsymbol{x} of weight $\simeq n / 2$ such that \boldsymbol{x}_{I} is of weight $2 p$
\triangleright Analysis shows that the attack performs better when
- $I \subset\{k+1, \ldots, N+k\}$
- Rates of \mathscr{S} and $\mathscr{C}_{\text {public }}$ are close
- n is small
\triangleright Bootstrapping Second codeword \boldsymbol{y} is found more easily from \boldsymbol{x}
- Take at random $I \subset\{k+1, \ldots, N+k\} \backslash \operatorname{support}(\boldsymbol{x})$

Open issue. Finding "good" parameters immune against this attack

Instead of Correcting?

\triangleright "Hash-and-Sign" Paradigm considers $h(\boldsymbol{m})$ as a"noisy" version of signature $\rightsquigarrow h(m)$ should not be changed
\triangleright CFS scheme simulates complete decoding
$\rightsquigarrow h(m)$ has to be changed
\triangleright With J.P. Tillich we propose to rephrase the problem in the framework of Rate-Distortion Theory (also called lossy source coding)
III. "Lossy Source Coding" Signatures

Rate-Distorsion Theory

\triangleright Aiming at representing/estimating/quantizing a source (= random variable $X(\omega)$) taking infinite numbers of values by means of a finite number N of values

$$
X(\omega) \in \mathcal{X} \rightsquigarrow \mathcal{R}(X) \stackrel{\text { def }}{=}\left\{\hat{X}\left(\omega_{1}\right), \ldots, \hat{X}\left(\omega_{N}\right)\right\}
$$

Example.

- Representation of real numbers with a fixed number of bits
- Lossy-data compression
\triangleright Representation cannot be done exactly \rightsquigarrow maximum distorsion D

$$
\forall \omega: \quad \operatorname{dist}(\hat{X}(\omega), X(\omega)) \leqslant D
$$

\triangleright Choosing N optimal values

$$
X(\omega) \rightsquigarrow \text { Find the closest point in } \mathcal{R}(X)
$$

Polar Codes (Arikan '07)

\triangleright Length $N=2^{n}$
\triangleright Encoding based on Fast Fourier Transform architecture

\triangleright Encoding/Decoding can be made in $\mathcal{O}(N \log N)$ operations
\triangleright Capacity-achieving codes for any binary memoryless channel
\triangleright Optimal for lossy source coding of a binary symetric source (Korada '10)

Encoding with Polar Codes (I)

Example. $n=3$

\triangleright Which code do we get?

Encoding with Polar Codes (II)

Extended Hamming code [8, 4, 4] defined by the generator matrix:

$$
\boldsymbol{G}=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

\rightsquigarrow Which entries have to be kept zero?

"Polarization" Phenomenon

\triangleright General rule For a code of length N and dimension K then set to 0 the $N-K$ worst positions
\triangleright Entries set to zero are called "frozen" (red)

Using Polar Codes in Cryptography

\triangleright Adding diversity

- Changing the alphabet from binary to $G F(4)=\left\{0,1, w, w^{2}\right\}$
- Not considering only one transform $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ but a set of transforms

$$
\left\{\left(\begin{array}{ll}
1 & w \\
w & 1
\end{array}\right),\left(\begin{array}{cc}
w^{2} & w \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
w^{2} & 1 \\
w & 1
\end{array}\right)\right\}
$$

- Randomly picking 2^{n-1} transforms at each level i of $\{1, \ldots, n\}$
\triangleright Expanding from $G F(4)$ to $G F(2) \rightsquigarrow$ binary linear code of length and dimension twice as large
\triangleright Masking the structure like McEliece

Estimating Minimum Distance

Proposition. Minimum distance of a polar code with information set containing only integers whose binary representation does not contains less than ℓ zeros is at least 2^{ℓ}.
\triangleright Proposed parameters (over $G F(4)$)

- $N=4,096, K=1,255, \ell=7 \rightsquigarrow$ minimum distance $\geqslant 128$
- 80-bit security (Peters' q-ary version of ISD)

Binary Distorsion Values (4, 000, 000 tests)

Maximum distorsion $\leqslant 2,268$

Performances

\triangleright Binary code of length 8,182 and dimension 2,510
\triangleright Maximum distorsion $\leqslant 2,268 \rightsquigarrow 1400$-bit security (ISD for binary codes)
\triangleright Average time for one signature: $\simeq 4 \mathrm{~ms}$
\triangleright Key size: 6.5 Mbyte

