Error-correcting Pairs for a Public-key Cryptosystem

Ruud Pellikaan g.r.pellikaan@tue.nl joint work with Irene Márquez-Corbella

Code-based Cryptography Workshop 2012 Lyngby, 9 May 2012

Error-correcting pair

- Generalized Reed-Solomon codes
- Alternant codes
- Goppa codes
- t-error-correcting pair corrects t-errors
- Algebraic geometry codes
- Code-based cryptography

C linear block code: \mathbb{F}_q -linear subspace of \mathbb{F}_q^n

parameters [n, k, d]: n = length k = dimension of Cd = minimum distance of C

$$d = \min |\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}|$$

t = error-correcting capacity of C

$$t = \lfloor \frac{d(C) - 1}{2} \rfloor$$

The standard inner product is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n$$

For two subsets A and B of \mathbb{F}_q^n A \perp B if and only if $\mathbf{a} \cdot \mathbf{b} = 0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$

Let **a** and **b** in \mathbb{F}_q^n The star product is defined by coordinatewise multiplication:

a * **b** =
$$(a_1 b_1, ..., a_n b_n)$$

For two subsets *A* and *B* of \mathbb{F}_q^n

$$A * B = \{a * b \mid a \in A \text{ and } b \in B\}$$

Let *C* be a linear code in \mathbb{F}_q^n

The pair (A, B) of linear subcodes of $\mathbb{F}_{q^m}^n$ is a called a t-error correcting pair (ECP) over \mathbb{F}_{q^m} for C if

E.1 $(A * B) \perp C$ E.2 k(A) > tE.3 $d(B^{\perp}) > t$ E.4 d(A) + d(C) > n

Let $\mathbf{a} = (a_1, \dots, a_n)$ be an *n*-tuple of mutually distinct elements of \mathbb{F}_q Let $\mathbf{b} = (b_1, \dots, b_n)$ be an *n*-tuple of nonzero elements of \mathbb{F}_q Evaluation map:

$$ev_{a,b}(f(X)) = (f(a_1)b_1, \ldots, f(a_n)b_n)$$

 $GRS_k(\mathbf{a}, \mathbf{b}) = \{ ev_{\mathbf{a}, \mathbf{b}}(f(X)) \mid f(X) \in \mathbb{F}_q[X], deg(f(X) < k \} \}$

Parameters: [n, k, n - k + 1] if $k \le n$ Furthermore

$$ev_{a,b}(f(X)) * ev_{a,c}(g(X)) = ev_{a,b}(f(X)g(X)) * c$$

 $\langle GRS_k(\mathbf{a}, \mathbf{b}) * GRS_l(\mathbf{a}, \mathbf{c}) \rangle = GRS_{k+l-1}(\mathbf{a}, \mathbf{b} * \mathbf{c})$

t-ECP for $GRS_{n-2t}(\mathbf{a}, \mathbf{b})$

```
Let C = GRS_{n-2t}(\mathbf{a}, \mathbf{b})
Then C has parameters: [n, n - 2t, 2t + 1]
and C^{\perp} = GRS_{2t}(\mathbf{a}, \mathbf{c}) for some c
```

```
Let A = GRS_{t+1}(\mathbf{a}, 1) and B = GRS_t(\mathbf{a}, \mathbf{c})
Then A * B \subseteq C^{\perp}
```

A has parameters [n, t + 1, n - t]B has parameters [n, t, n - t + 1]So B^{\perp} has parameters [n, n - t, t + 1]

Hence (A, B) is a t-error-correcting pair for C

Conversely an [n, n - 2t, 2t + 1] code that has a *t*-ECP is a GRS code

Let **a** be an *n*-tuple of mutually distinct elements of \mathbb{F}_{q^m} Let **b** be an *n*-tuple of nonzero elements of \mathbb{F}_{q^m}

Let $GRS_k(\mathbf{a}, \mathbf{b})$ be the GRS code over \mathbb{F}_{q^m} of dimension k

The alternant code $ALT_r(\mathbf{a}, \mathbf{b})$ is the \mathbb{F}_q -linear restriction

$$ALT_r(\mathbf{a}, \mathbf{b}) = \mathbb{F}_a^n \cap (GRS_r(\mathbf{a}, \mathbf{b}))^{\perp}$$

Then $ALT_r(\mathbf{a}, \mathbf{b})$ has parameters $[n, k, d]_q$ with

 $k \ge n - mr$ and $d \ge r + 1$

Every linear code of minimum distance at least 2 is an alternant code!

t-ECP for *ALT*_{2t}(**a**, **b**)

```
Let C = ALT_{2t}(\mathbf{a}, \mathbf{b})
Then C has minimum distance d \ge 2t + 1
and C \subseteq (GRS_{2t+1}(\mathbf{a}, \mathbf{b}))^{\perp}
```

```
Let A = GRS_{t+1}(\mathbf{a}, \mathbf{1}) and B = GRS_t(\mathbf{a}, \mathbf{b})
Then A * B \subseteq GRS_{2t+1}(\mathbf{a}, \mathbf{b})
Then (A * B) \perp C
```

A has parameters [n, t + 1, n - t]B has parameters [n, t, n - t + 1]So B^{\perp} has parameters [n, n - t, t + 1]

Hence (A, B) is a *t*-error-correcting pair over \mathbb{F}_{q^m} for C

Goppa codes

Let $L = (a_1, ..., a_n)$ be an *n*-tuple of *n* distinct elements of \mathbb{F}_{q^m} Let *g* be a polynomial with coefficients in \mathbb{F}_{q^m} such that

 $g(a_j) \neq 0$ for all j

Then g is called Goppa polynomial with respect to L

Define the \mathbb{F}_q -linear Goppa code $\Gamma(L, g)$ by

$$\Gamma(L, g) = \left\{ \mathbf{c} \in \mathbb{F}_q^n \mid \sum_{j=1}^n \frac{c_j}{X - a_j} \equiv 0 \mod g(X) \right\}$$

10/37

Goppa codes are alternant codes

Let $L = \mathbf{a} = (a_1, \dots, a_n)$ Let g be a Goppa polynomial of degree r

Let $b_j = 1/g(a_j)$ Then

 $\Gamma(L, g) = ALT_r(\mathbf{a}, \mathbf{b})$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_q$ with

$$k \ge n - mr$$
 and $d \ge r + 1$

and has an $\lfloor r/2 \rfloor$ -error-correcting pair

Let $L = \mathbf{a} = (a_1, \dots, a_n)$ Let g be a Goppa polynomial with coefficients in \mathbb{F}_{2^m} of degree r

Suppose moreover that *g* has no square factor Then

 $\Gamma(\boldsymbol{L},\boldsymbol{g}) = \Gamma(\boldsymbol{L},\boldsymbol{g}^2)$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_q$ with

$$k \ge n - mr$$
 and $d \ge 2r + 1$

and has an r-error-correcting pair

Let C be a linear code in \mathbb{F}_q^n

```
The pair (A, B) of linear subcodes of \mathbb{F}_{q^m}^n is a called a t-error correcting pair (ECP) over \mathbb{F}_{q^m} for C if
E.1 (A * B) \perp C
E.2 k(A) > t
E.3 d(B<sup>\perp</sup>) > t
E.4 d(A) + d(C) > n
```

Let (A, B) be linear subcodes of $\mathbb{F}_{q^m}^n$ that satisfy E.1, E.2, E.3 and E.5 $d(A^{\perp}) > 1$ E.6 d(A) + 2t > nThen $d(C) \ge 2t + 1$ and (A, B) is a *t*-ECP for *C* 13/37

Let A and B be linear subspaces of $\mathbb{F}_{q^m}^n$ Let $\mathbf{r} \in \mathbb{F}_q^n$ be a received word Define the kernel

$$K(\mathbf{r}) = \{ \mathbf{a} \in A \mid (\mathbf{a} \ast \mathbf{b}) \cdot \mathbf{r} = 0 \text{ for all } \mathbf{b} \in B \}$$

Lemma

Let *C* be an \mathbb{F}_q -linear code of length *n* Let **r** be a received word with error vector **e** So **r** = **c** + **e** for some **c** \in *C* If $A * B \subseteq C^{\perp}$, then $K(\mathbf{r}) = K(\mathbf{e})$

14/37

Let $A = GRS_{t+1}(\mathbf{a}, \mathbf{1})$ and $B = GRS_t(\mathbf{a}, \mathbf{1})$ and $C = \langle A * B \rangle^{\perp}$

Let

$$\mathbf{a}_{i} = ev_{\mathbf{a},1}(X^{i-1}) \text{ for } i = 1, ..., t + 1$$

 $\mathbf{b}_{j} = ev_{\mathbf{a},1}(X^{j}) \text{ for } j = 1, ..., t$
 $\mathbf{h}_{l} = ev_{\mathbf{a},1}(X^{l}) \text{ for } l = 1, ..., 2t$

Then

 a_1, \ldots, a_{t+1} is a basis of A b_1, \ldots, b_t is a basis of B h_1, \ldots, h_{2t} is a basis of C^{\perp}

Furthermore

$$\mathbf{a}_i * \mathbf{b}_j = \mathsf{ev}_{\mathbf{a},1}(\mathbf{X}^{i+j-1}) = \mathbf{h}_{i+j-1}$$

Let r be a received word and $\mathbf{s} = \mathbf{r}\mathbf{H}^{T}$ its syndrome Then

$$(\mathbf{b}_j * \mathbf{a}_i) \cdot \mathbf{r} = \mathbf{s}_{i+j-1}.$$

To compute the kernel $K(\mathbf{r})$ we have to compute the null space of the matrix of syndromes

$$\begin{pmatrix} s_1 & s_2 & \cdots & s_t & s_{t+1} \\ s_2 & s_3 & \cdots & s_{t+1} & s_{t+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ s_t & s_{t+1} & \cdots & s_{2t-1} & s_{2t} \end{pmatrix}$$

16/37

Let (A, B) be a *t*-ECP for *C* Let *J* be a subset of $\{1, ..., n\}$ Define the subspace of *A*

$$\mathbf{A}(\mathbf{J}) = \{ \mathbf{a} \in \mathbf{A} \mid a_j = 0 \text{ for all } j \in \mathbf{J} \}$$

Lemma

Let $(A * B) \perp C$ Let e be an error vector of the received word r If $I = \text{supp}(e) = \{ i \mid e_i \neq 0 \}$, then

 $A(I) \subseteq K(\mathbf{r})$

If moreover $d(B^{\perp}) > wt(e)$, then A(I) = K(r)

17/37

Let (A, B) be a *t*-ECP for *C* with $d(C) \ge 2t + 1$ Suppose that $c \in C$ is the code word sent and r = c + e is the received word for some error vector *e* with wt(*e*) $\le t$

The basic algorithm for the code C:

- Compute the kernel *K*(**r**)

This kernel is nonzero since k(A) > t

- Take a nonzero element **a** of $K(\mathbf{r})$

 $K(\mathbf{r}) = K(\mathbf{e}) \operatorname{since} (\mathbf{A} * \mathbf{B}) \perp \mathbf{C}$

- Determine the set J of zero positions of a

 $\operatorname{supp}(\mathbf{e}) \subseteq J \operatorname{since} \frac{d(B^{\perp}) > t}{}$

- |J| < d(C) since d(A) + d(C) < n
- Compute the error values by erasure decoding

18/3

Theorem

Let *C* be an \mathbb{F}_q -linear code of length *n* Let (A, B) be a *t*-error-correcting pair over \mathbb{F}_{q^m} for *C*

Then the basic algorithm corrects *t* errors for the code *C* with complexity $\mathcal{O}((mn)^3)$

19/3

Let \mathcal{X} be an algebraic variety over \mathbb{F}_q with a subset \mathcal{P} of $\mathcal{X}(\mathbb{F}_q)$ enumerated by P_1, \ldots, P_n

Suppose that we have a vector space *L* over \mathbb{F}_q of functions on \mathcal{X} with values in \mathbb{F}_q So $f(P_i) \in \mathbb{F}_q$ for all *i* and $f \in L$ In this way we have an evaluation map

$$ev_{\mathcal{P}}: L \longrightarrow \mathbb{F}_q^n$$

defined by $ev_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$

This evaluation map is linear, so its image is a linear code

20/3

The classical example: Generalized Reed-Solomon codes

The geometric object \mathcal{X} is the affine line over \mathbb{F}_q The points are n distinct elements of \mathbb{F}_q L is the vector space of polynomials of degree at most k-1and with coefficients in \mathbb{F}_q

This vector space has dimension kSuch polynomials have at most k - 1 zeros so nonzero codewords have at least n - k + 1 nonzeros

This code has parameters [n, k, n - k + 1] if $k \le n$

21/3

Let \mathcal{X} be an algebraic curve over \mathbb{F}_q of genus g $\mathbb{F}_q(\mathcal{X})$ is the function field of the curve \mathcal{X} with field of constants \mathbb{F}_q

Let f be a nonzero rational function on the curve The divisor of zeros and poles of f is denoted by (f)

Let *E* be a divisor of \mathcal{X} of degree *m* Then

$$L(E) = \{ f \in \mathbb{F}_q(\mathcal{X}) \mid f = 0 \text{ or } (f) \ge -E \}$$

The dimension of the space L(E) is denoted by l(E)Then $l(E) \ge m + 1 - g$ and equality holds if m > 2g - 2by the Theorem of Riemann-Roch

22/3

Let $\mathcal{P} = (P_1, \dots, P_n)$ an *n*-tuple of mutual distinct points of $\mathcal{X}(\mathbb{F}_q)$

If the support of E is disjoint from \mathcal{P} , then the evaluation map

$$\operatorname{ev}_{\mathcal{P}}: L(E) \to \mathbb{F}_q^n$$

where $ev_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$, is well defined.

The algebraic geometry code $C_L(\mathcal{X}, \mathcal{P}, E)$ is the image of L(E) under the evaluation map $ev_{\mathcal{P}}$ If m < n, then $C_L(\mathcal{X}, \mathcal{P}, E)$ is an [n, k, d] code with

 $k \ge m+1-g$ and $d \ge n-m$

n - m is called the designed minimum distance of $C_L(\mathcal{X}, \mathcal{P}, E)$

Information rateRRelative minimum distance δ SingletonRGilbert-VarshamovRq-ary entropy function H_q Goppa for AG codesRRelative genus γ Ihara-Tsfasman-Vladut-Zink γ

$$R = k/n$$

$$\delta = d/n$$

$$R + \delta \le 1$$

$$R \ge 1 - H_q(\delta)$$

$$H_q$$

$$R + \delta \ge 1 - \gamma$$

$$\gamma = g/n$$

$$\gamma = \frac{1}{\sqrt{q} - 1}$$

TU/e Technische Universiteit Eindhoven University of Technology

Bounds on codes

Figuur: Bounds on *R* as a function of δ for q = 49 and $\gamma = \frac{1}{6}$.

Let ω be a differential form with a simple pole at P_j with residue 1 for all j = 1, ..., n

Let *K* be the canonical divisor of ω Let *m* be the degree of the divisor *E* on \mathcal{X} with disjoint support from \mathcal{P}

Let
$$E^{\perp} = D - E + K$$
 and $m^{\perp} = \deg(E^{\perp})$
Then $m^{\perp} = 2g - 2 - m + n$ and

 $\mathcal{C}_{L}(\mathcal{X},\mathcal{P},\mathbf{E})^{\perp}=\mathcal{C}_{L}(\mathcal{X},\mathcal{P},\mathbf{E}^{\perp})$

m - 2g + 2 is called the designed minimum distance of $C_L(\mathcal{X}, \mathcal{P}, E)^{\perp}$

Let *F* and *G* be divisors Then there is a well defined linear map

$$L(F)\otimes L(G)\longrightarrow L(F+G)$$

given on generators by

$$f \otimes g \mapsto fg$$

Hence

 $\textit{C}_{\textit{L}}(\textit{X}, \textit{P}, \textit{F}) * \textit{C}_{\textit{L}}(\textit{X}, \textit{P}, \textit{G}) \subseteq \textit{C}_{\textit{L}}(\textit{X}, \textit{P}, \textit{F} + \textit{G})$

Let $C = C_L(\mathcal{X}, \mathcal{P}, E)^{\perp}$

Choose a divisor *F* with support disjoint from \mathcal{P} Let $A = C_L(\mathcal{X}, \mathcal{P}, F)$ Let $B = C_L(\mathcal{X}, \mathcal{P}, E - F)$

Then

- $-A * B \subseteq C^{\perp}$
- If $t + g \leq \deg(F) < n$, then k(A) > t
- If deg(G F) > t + 2g 2, then $d(B^{\perp}) > t$
- If deg(G F) > 2g 2, then d(A) + d(C) > n

28/37

Proposition

An algebraic geometry code of designed minimum distance dfrom a curve over \mathbb{F}_q of genus ghas a *t*-error-correcting pair over \mathbb{F}_q where

$$t = \lfloor \frac{d-1-g}{2} \rfloor$$

Proposition

An algebraic geometry code of designed minimum distance dfrom a curve over \mathbb{F}_q of genus ghas a *t*-error-correcting pair over \mathbb{F}_{q^m} where

$$t = \lfloor \frac{d-1}{2} \rfloor$$

if

$$m > \log_q \left(2 \binom{n}{t} + 2 \binom{n}{t+1} + 1 \right)$$

By randomnization - Not constructive!

Koblitz:

At the heart of any public-key cryptosystem is a one-way function - a function

$$y = f(x)$$

that is easy to evaluate but for which is computationally infeasible (one hopes) to find the inverse

$$x = f^{-1}(y)$$

31/37

PKC systems use trapdoor one-way functions

by mathematical problems that are (supposedly) hard

RSA, factoring integers: given n = pq find (p, q)Diffie-Hellman, discrete-log problem in \mathbb{F}_q : given $b = a^n$ find nElliptic curve PKC, addition on elliptic curve: given Q = nP, find n

Code based PKC systems, decoding of codes

McEliece (Goppa codes) Niederreiter with parity check matrix instead of generator matrix Janwa-Moreno (Algebraic geometry codes)

32/3

Decoding arbitrary linear codes Exponential complexity $\approx q^{e(R)n}$

x-axis: information rate R = k/n*y*-axis: complexity exponent e(R)

McEliece:

Let *C* be a class of codes that have efficient decoding algorithms correcting *t* errors with $t \le (d - 1)/2$

Secret key: (S, G, P)S an invertible $k \times k$ matrix G a $k \times n$ generator matrix of a code C in C. P an $n \times n$ permutation matrix

Public key: G' = SGP

Message: m in \mathbb{F}_q^k Encryption: $\mathbf{y} = \mathbf{m}G' + \mathbf{e}$ with random chosen \mathbf{e} in \mathbb{F}_q^n of weight tDecryption: $\mathbf{y}P^{-1} = \mathbf{m}SG + \mathbf{e}P^{-1}$ and $\mathbf{e}P^{-1}$ has weight tDecoder gives $\mathbf{c} = \mathbf{m}SG$ as closest codeword

34/3

G, S and P are kept secret G' = SGP is public

The (trapdoor) one-way function of the McEliece public cryptosystem is given by

$$x = (\mathbf{m}, \mathbf{e}) \mapsto y = \mathbf{m}G' + \mathbf{e}$$

where $\mathbf{m} \in \mathbb{F}_q^k$ is the plaintext $\mathbf{e} \in \mathbb{F}_q^n$ is a random error vector with hamming weight at most t


```
Let C_{ECP} be the set of pairs (A, B) that satisfy E.2, E.3, E.5 and E.6
```

```
The McEliece cryptosystem on codes C \subseteq (A * B)^{\perp}
with (A, B) in \mathcal{C}_{ECP} is based on
the inherent tractability of
finding an inverse on the one-way function
```

```
x = (A, B) \mapsto y = (A * B)
```

where (A, B) is in \mathcal{C}_{ECP}

36/3

State of the art

- GRS codes: solved by Sidelnikov-Shestakov
- Alternant codes: open
- Goppa codes: open
- AG codeds: work in progress by

Irene Márquez-Corbella Edgar Martínez-Moro Ruud Pellikaan Diego Ruano

37/37