Error-correcting Pairs for a Public-key Cryptosystem

Ruud Pellikaan
g.r.pellikaan@tue.nl
joint work with
Irene Márquez-Corbella

Code-based Cryptography Workshop 2012
Lyngby, 9 May 2012

Introduction and content

- Error-correcting pair
- Generalized Reed-Solomon codes
- Alternant codes
- Goppa codes
- t-error-correcting pair corrects t-errors
- Algebraic geometry codes
- Code-based cryptography

Error-correcting codes

C linear block code: \mathbb{F}_{q}-linear subspace of \mathbb{F}_{q}^{n}

parameters $[n, k, d]$:
$n=$ length
$k=$ dimension of C
$d=$ minimum distance of C

$$
d=\min |\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}|
$$

$t=$ error-correcting capacity of C

$$
t=\left\lfloor\frac{d(C)-1}{2}\right\rfloor
$$

Inner and star product

The standard inner product is defined by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

For two subsets A and B of \mathbb{F}_{q}^{n}
$A \perp B$ if and only if $\mathbf{a} \cdot \mathbf{b}=0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$
Let a and b in \mathbb{F}_{q}^{n}
The star product is defined by coordinatewise multiplication:

$$
\mathbf{a} * \mathbf{b}=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

For two subsets A and B of \mathbb{F}_{q}^{n}

$$
A * B=\{\mathbf{a} * \mathbf{b} \mid \mathbf{a} \in A \text { and } \mathbf{b} \in B\}
$$

Error-correcting pairs

Let C be a linear code in \mathbb{F}_{q}^{n}
The pair (A, B) of linear subcodes of $\mathbb{F}_{q^{m}}^{n}$ is a called a t-error correcting pair (ECP) over $\mathbb{F}_{q^{m}}$ for C if

$$
\begin{array}{ll}
\text { E. } 1 & (A * B) \perp C \\
\text { E. } 2 & k(A)>t \\
\text { E. } 3 & d\left(B^{\perp}\right)>t \\
\text { E. } 4 & d(A)+d(C)>n
\end{array}
$$

Generalized Reed-Solomon codes

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of mutually distinct elements of \mathbb{F}_{q}
Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be an n-tuple of nonzero elements of \mathbb{F}_{q}
Evaluation map:

$$
\mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X))=\left(f\left(a_{1}\right) b_{1}, \ldots, f\left(a_{n}\right) b_{n}\right)
$$

$G R S_{k}(\mathbf{a}, \mathbf{b})=\left\{\operatorname{ev}_{\mathbf{a}, \mathbf{b}}(f(X)) \mid f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f(X)<k\}\right.$
Parameters: [$n, k, n-k+1$] if $k \leq n$
Furthermore

$$
\begin{aligned}
& \mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X)) * \mathrm{ev}_{\mathrm{a}, \mathrm{c}}(g(X))=\mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X) g(X)) * \mathrm{c} \\
& \left\langle G R S_{k}(\mathrm{a}, \mathrm{~b}) * G R S_{l}(\mathrm{a}, \mathrm{c})\right\rangle=G R S_{k+l-1}(\mathrm{a}, \mathrm{~b} * \mathrm{c})
\end{aligned}
$$

t-ECP for $\operatorname{GRS}_{n-2 t}(\mathrm{a}, \mathrm{b})$

Let $C=G R S_{n-2 t}(\mathbf{a}, \mathbf{b})$
Then C has parameters: [$n, n-2 t, 2 t+1$]
and $C^{\perp}=G R S_{2 t}(\mathrm{a}, \mathrm{c})$ for some c

Let $A=G R S_{t+1}(\mathbf{a}, 1)$ and $B=G R S_{t}(\mathbf{a}, \mathbf{c})$
Then $A * B \subseteq C^{\perp}$
A has parameters $[n, t+1, n-t]$
B has parameters [$n, t, n-t+1$]
So B^{\perp} has parameters $[n, n-t, t+1]$

Hence (A, B) is a t-error-correcting pair for C

Conversely an [$n, n-2 t, 2 t+1$] code that has a t-ECP is a GRS code

Alternant codes

Let a be an n-tuple of mutually distinct elements of $\mathbb{F}_{q^{m}}$
Let b be an n-tuple of nonzero elements of $\mathbb{F}_{q^{m}}$
Let $G R S_{k}(\mathbf{a}, \mathbf{b})$ be the $G R S$ code over $\mathbb{F}_{q^{m}}$ of dimension k
The alternant code $\operatorname{ALT}_{r}(\mathbf{a}, \mathbf{b})$ is the \mathbb{F}_{q}-linear restriction

$$
A L T_{r}(\mathbf{a}, \mathbf{b})=\mathbb{F}_{q}^{n} \cap\left(G R S_{r}(\mathbf{a}, \mathbf{b})\right)^{\perp}
$$

Then $A L T_{r}(\mathbf{a}, \mathrm{~b})$ has parameters $[n, k, d]_{q}$ with

$$
k \geq n-m r \text { and } d \geq r+1
$$

Every linear code of minimum distance at least 2 is an alternant code!

Let $C=A L T_{2 t}(\mathbf{a}, \mathbf{b})$
Then C has minimum distance $d \geq 2 t+1$
and $C \subseteq\left(G R S_{2 t+1}(\mathbf{a}, \mathbf{b})\right)^{\perp}$
Let $A=G R S_{t+1}(\mathbf{a}, 1)$ and $B=G R S_{t}(\mathbf{a}, \mathbf{b})$
Then $A * B \subseteq G R S_{2 t+1}(\mathbf{a}, \mathbf{b})$
Then $(A * B) \perp C$
A has parameters $[n, t+1, n-t]$
B has parameters [$n, t, n-t+1$]
So B^{\perp} has parameters $[n, n-t, t+1]$

Hence (A, B) is a t-error-correcting pair over $\mathbb{F}_{q^{m}}$ for C

Goppa codes

Let $L=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of n distinct elements of $\mathbb{F}_{q^{m}}$
Let g be a polynomial with coefficients in $\mathbb{F}_{q^{m}}$ such that

$$
g\left(a_{j}\right) \neq 0 \text { for all } j
$$

Then g is called Goppa polynomial with respect to L
Define the \mathbb{F}_{q}-linear Goppa code $\Gamma(L, \boldsymbol{g})$ by

$$
\Gamma(L, g)=\left\{c \in \mathbb{F}_{q}^{n} \left\lvert\, \sum_{j=1}^{n} \frac{c_{j}}{X-a_{j}} \equiv 0 \bmod g(X)\right.\right\}
$$

Goppa codes are alternant codes

Let $L=\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$
Let g be a Goppa polynomial of degree r

Let $b_{j}=1 / g\left(a_{j}\right)$
Then

$$
\Gamma(L, g)=A L T_{r}(\mathbf{a}, \mathbf{b})
$$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_{q}$ with

$$
k \geq n-m r \text { and } d \geq r+1
$$

and has an $\lfloor r / 2\rfloor$-error-correcting pair

Binary Goppa codes

Let $L=\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$
Let g be a Goppa polynomial with coefficients in $\mathbb{F}_{2^{m}}$ of degree r
Suppose moreover that g has no square factor Then

$$
\Gamma(L, g)=\Gamma\left(L, g^{2}\right)
$$

Hence $\Gamma(L, g)$ has parameters $[n, k, d]_{q}$ with

$$
k \geq n-m r \text { and } d \geq 2 r+1
$$

and has an r-error-correcting pair

Theory of error-correcting pairs

Let C be a linear code in \mathbb{F}_{q}^{n}
The pair (A, B) of linear subcodes of $\mathbb{F}_{q^{m}}^{n}$ is a called a t-error correcting pair (ECP) over $\mathbb{F}_{q^{m}}$ for C if

$$
\begin{array}{ll}
\text { E. } 1 & (A * B) \perp C \\
\text { E. } 2 & k(A)>t \\
\text { E. } 3 & d\left(B^{\perp}\right)>t \\
\text { E. } 4 & d(A)+d(C)>n
\end{array}
$$

Let (A, B) be linear subcodes of $\mathbb{F}_{q^{m}}^{n}$ that satisfy $E .1, E .2, E .3$ and
E. $5 d\left(A^{\perp}\right)>1$
E. $6 d(A)+2 t>n$

Then $d(C) \geq 2 t+1$ and (A, B) is a t-ECP for C

Kernel of a received word

Let A and B be linear subspaces of $\mathbb{F}_{q^{m}}^{n}$
Let $r \in \mathbb{F}_{q}^{n}$ be a received word
Define the kernel

$$
K(\mathbf{r})=\{\mathbf{a} \in A \mid(\mathbf{a} * \mathbf{b}) \cdot \mathbf{r}=0 \text { for all } \mathbf{b} \in B\}
$$

Lemma
Let C be an \mathbb{F}_{q}-linear code of length n
Let r be a received word with error vector e
So $r=c+e$ for some $c \in C$
If $A * B \subseteq C^{\perp}$, then

$$
K(\mathrm{r})=K(\mathrm{e})
$$

Kernel for a GRS code

Let $A=G R S_{t+1}(\mathbf{a}, 1)$ and $B=G R S_{t}(\mathbf{a}, 1)$ and $C=\langle A * B\rangle^{\perp}$
Let
$\mathrm{a}_{i}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{i-1}\right)$ for $i=1, \ldots, t+1$
$\mathrm{b}_{j}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{j}\right)$ for $j=1, \ldots, t$
$\mathrm{h}_{l}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{l}\right)$ for $l=1, \ldots, 2 t$

Then

$\mathrm{a}_{1}, \ldots, \mathrm{a}_{t+1}$ is a basis of A
$\mathbf{b}_{1}, \ldots, \mathbf{b}_{t}$ is a basis of B
$h_{1}, \ldots, h_{2 t}$ is a basis of C^{\perp}

Furthermore

$$
\mathbf{a}_{i} * \mathbf{b}_{j}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{i+j-1}\right)=\mathbf{h}_{i+j-1}
$$

Matrix of syndromes for a GRS code

Let r be a received word and
$\mathrm{s}=\mathrm{r} \mathrm{H}^{T}$ its syndrome
Then

$$
\left(\mathbf{b}_{j} * \mathbf{a}_{i}\right) \cdot \mathbf{r}=s_{i+j-1}
$$

To compute the kernel $K(\mathbf{r})$ we have to compute the null space of the matrix of syndromes

$$
\left(\begin{array}{lllll}
s_{1} & s_{2} & \cdots & s_{t} & s_{t+1} \\
s_{2} & s_{3} & \cdots & s_{t+1} & s_{t+2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
s_{t} & s_{t+1} & \cdots & s_{2 t-1} & s_{2 t}
\end{array}\right)
$$

Error location

Let (A, B) be a t-ECP for C
Let J be a subset of $\{1, \ldots, n\}$
Define the subspace of A

$$
A(J)=\left\{\mathbf{a} \in A \mid a_{j}=0 \text { for all } j \in J\right\}
$$

Lemma
Let $(A * B) \perp C$
Let \mathbf{e} be an error vector of the received word r
If $I=\operatorname{supp}(e)=\left\{i \mid e_{i} \neq 0\right\}$, then

$$
A(I) \subseteq K(\mathbf{r})
$$

If moreover $d\left(B^{\perp}\right)>w t(e)$, then $A(I)=K(r)$

Basic algorithm

Let (A, B) be a t-ECP for C with $d(C) \geq 2 t+1$
Suppose that $c \in C$ is the code word sent and $r=c+e$ is the received word for some error vector \mathbf{e} with $\mathrm{wt}(\mathrm{e}) \leq t$

The basic algorithm for the code C :

- Compute the kernel $K(r)$

This kernel is nonzero since $k(A)>t$

- Take a nonzero element a of $K(\mathbf{r})$

$$
K(\mathbf{r})=K(\mathbf{e}) \text { since }(A * B) \perp C
$$

- Determine the set J of zero positions of a

$$
\begin{aligned}
& \operatorname{supp}(e) \subseteq J \text { since } d\left(B^{\perp}\right)>t \\
& |J|<d(C) \text { since } d(A)+d(C)<n
\end{aligned}
$$

- Compute the error values by erasure decoding

t-ECP corrects t errors efficiently

Theorem

Let C be an \mathbb{F}_{q}-linear code of length n Let (A, B) be a t-error-correcting pair over $\mathbb{F}_{q^{m}}$ for C

Then the basic algorithm corrects t errors for the code C with complexity $\mathcal{O}\left((m n)^{3}\right)$

Algebraic geometry codes

Let \mathcal{X} be an algebraic variety over \mathbb{F}_{q} with a subset \mathcal{P} of $\mathcal{X}\left(\mathbb{F}_{q}\right)$ enumerated by P_{1}, \ldots, P_{n}

Suppose that we have a vector space L over \mathbb{F}_{q}
of functions on \mathcal{X} with values in \mathbb{F}_{q}
So $f\left(P_{i}\right) \in \mathbb{F}_{q}$ for all i and $f \in L$
In this way we have an evaluation map

$$
e v_{\mathcal{P}}: L \longrightarrow \mathbb{F}_{q}^{n}
$$

defined by $\operatorname{ev_{\mathcal {P}}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)$
This evaluation map is linear, so its image is a linear code

Codes on the affine line

The classical example:
Generalized Reed-Solomon codes

The geometric object \mathcal{X} is the affine line over \mathbb{F}_{q}
The points are n distinct elements of \mathbb{F}_{q}
L is the vector space of polynomials of degree at most $k-1$ and with coefficients in \mathbb{F}_{q}

This vector space has dimension k
Such polynomials have at most $k-1$ zeros
so nonzero codewords have at least $n-k+1$ nonzeros

This code has parameters [$n, k, n-k+1$] if $k \leq n$

Codes on curves-function fields

Let \mathcal{X} be an algebraic curve over \mathbb{F}_{q} of genus g
$\mathbb{F}_{q}(\mathcal{X})$ is the function field of the curve \mathcal{X} with field of constants \mathbb{F}_{q}
Let f be a nonzero rational function on the curve The divisor of zeros and poles of f is denoted by (f)

Let E be a divisor of \mathcal{X} of degree m
Then

$$
L(E)=\left\{f \in \mathbb{F}_{q}(\mathcal{X}) \mid f=0 \text { or }(f) \geq-E\right\}
$$

The dimension of the space $L(E)$ is denoted by $l(E)$
Then $l(E) \geq m+1-g$ and equality holds if $m>2 g-2$ by the Theorem of Riemann-Roch

Codes on curves

Let $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ an n-tuple of mutual distinct points of $\mathcal{X}\left(\mathbb{F}_{q}\right)$
If the support of E is disjoint from \mathcal{P}, then the evaluation map

$$
\mathrm{ev}_{\mathcal{P}}: L(E) \rightarrow \mathbb{F}_{q}^{n}
$$

where $\operatorname{ev}_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)$, is well defined.

The algebraic geometry code $C_{L}(\mathcal{X}, \mathcal{P}, E)$
is the image of $L(E)$ under the evaluation map $\mathrm{ev}_{\mathcal{P}}$ If $m<n$, then $C_{L}(\mathcal{X}, \mathcal{P}, E)$ is an $[n, k, d]$ code with

$$
k \geq m+1-g \text { and } d \geq n-m
$$

$n-m$ is called the designed minimum distance of $C_{L}(\mathcal{X}, \mathcal{P}, E)$

Information rate

Information rate
Relative minimum distance
Singleton
Gilbert-Varshamov
q-ary entropy function
Goppa for AG codes
Relative genus
Ihara-Tsfasman-Vladut-Zink

$$
R=k / n
$$

$$
\delta=d / n
$$

$$
R+\delta \leq 1
$$

$$
R \geq 1-H_{q}(\delta)
$$

$$
H_{q}
$$

$$
R+\delta \geq 1-\gamma
$$

$\gamma=g / n$
$\gamma=\frac{1}{\sqrt{q}-1}$

Bounds on codes

Figuur: Bounds on R as a function of δ for $q=49$ and $\gamma=\frac{1}{6}$.

Dual codes on curves

Let ω be a differential form with a simple pole at P_{j} with residue 1 for all $j=1, \ldots, n$

Let K be the canonical divisor of ω
Let m be the degree of the divisor E on \mathcal{X} with disjoint support from \mathcal{P}

Let $E^{\perp}=D-E+K$ and $m^{\perp}=\operatorname{deg}\left(E^{\perp}\right)$
Then $m^{\perp}=2 g-2-m+n$ and

$$
C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}=C_{L}\left(\mathcal{X}, \mathcal{P}, E^{\perp}\right)
$$

$m-2 g+2$ is called the designed minimum distance of $C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}$

ECP for AG codes - 1

Let F and G be divisors

Then there is a well defined linear map

$$
L(F) \otimes L(G) \longrightarrow L(F+G)
$$

given on generators by

$$
f \otimes g \mapsto f g
$$

Hence

$$
C_{L}(\mathcal{X}, \mathcal{P}, F) * C_{L}(\mathcal{X}, \mathcal{P}, G) \subseteq C_{L}(\mathcal{X}, \mathcal{P}, F+G)
$$

ECP for AG codes - 2

$$
\text { Let } C=C_{L}(X, \mathcal{P}, E)^{\perp}
$$

Choose a divisor F with support disjoint from \mathcal{P}
Let $A=C_{L}(\mathcal{X}, \mathcal{P}, F)$
Let $B=C_{L}(\mathcal{X}, \mathcal{P}, E-F)$
Then
$-A * B \subseteq C^{\perp}$

- If $t+g \leq \operatorname{deg}(F)<n$, then $k(A)>t$
- If $\operatorname{deg}(G-F)>t+2 g-2$, then $d\left(B^{\perp}\right)>t$
- If $\operatorname{deg}(G-F)>2 g-2$, then $d(A)+d(C)>n$

ECP for AG codes - 3

Proposition

An algebraic geometry code of designed minimum distance d from a curve over \mathbb{F}_{q} of genus g has a t-error-correcting pair over \mathbb{F}_{q} where

$$
t=\left\lfloor\frac{d-1-g}{2}\right\rfloor
$$

ECP for AG codes - improvement

Proposition

An algebraic geometry code of designed minimum distance d from a curve over \mathbb{F}_{q} of genus g has a t-error-correcting pair over $\mathbb{F}_{q^{m}}$ where

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

if

$$
m>\log _{q}\left(2\binom{n}{t}+2\binom{n}{t+1}+1\right)
$$

By randomnization - Not constructive!

Public-key cryptosystems - 1

Koblitz:

At the heart of any public-key cryptosystem is a one-way function - a function

$$
y=f(x)
$$

that is easy to evaluate but for which is computationally infeasible (one hopes) to find the inverse

$$
x=f^{-1}(y)
$$

Public-key cryptosystems - 2

PKC systems use trapdoor one-way functions
by mathematical problems that are (supposedly) hard
RSA, factoring integers: given $n=p q$ find (p, q)
Diffie-Hellman, discrete-log problem in \mathbb{F}_{q} : given $b=a^{n}$ find n Elliptic curve PKC, addition on elliptic curve: given $Q=n P$, find n

Code based PKC systems, decoding of codes

McEliece (Goppa codes)
Niederreiter with parity check matrix instead of generator matrix Janwa-Moreno (Algebraic geometry codes)

Decoding up to half the minimum distance

Decoding arbitrary linear codes

 Exponential complexity $\approx q^{\mathrm{e}(R) n}$
x-axis: information rate $R=k / n$
y-axis: complexity exponent $e(R)$

Code based PKC systems - 1

McEliece:

Let \mathcal{C} be a class of codes that have
efficient decoding algorithms correcting t errors with $t \leq(d-1) / 2$

Secret key: (S, G, P)
S an invertible $k \times k$ matrix
G a $k \times n$ generator matrix of a code C in \mathcal{C}.
P an $n \times n$ permutation matrix

Public key: $G^{\prime}=S G P$
Message: m in \mathbb{F}_{q}^{k}
Encryption: $\mathbf{y}=\mathbf{m} \mathbf{G}^{\prime}+\mathbf{e}$ with random chosen \mathbf{e} in \mathbb{F}_{q}^{n} of weight t
Decryption: $y P^{-1}=m S G+e P^{-1}$ and $\mathrm{e} P^{-1}$ has weight t
Decoder gives $\mathbf{c}=\mathrm{mSG}$ as closest codeword

Code based PKC systems - 2

G, S and P are kept secret
$G^{\prime}=S G P$ is public

The (trapdoor) one-way function of the McEliece public cryptosystem is given by

$$
x=(\mathrm{m}, \mathrm{e}) \mapsto y=\mathrm{m} \mathrm{G}^{\prime}+\mathbf{e}
$$

where $m \in \mathbb{F}_{q}^{k}$ is the plaintext $\mathbf{e} \in \mathbb{F}_{q}^{n}$ is a random error vector with hamming weight at most t

Code based PKC systems - 3

Let $\mathcal{C}_{\text {ECP }}$ be the set of pairs (A, B) that satisfy E.2, E.3, E. 5 and E. 6

The McEliece cryptosystem on codes $C \subseteq(A * B)^{\perp}$ with (A, B) in $\mathcal{C}_{E C P}$ is based on the inherent tractability of finding an inverse on the one-way function

$$
x=(A, B) \mapsto y=(A * B)
$$

where (A, B) is in $\mathcal{C}_{E C P}$

Code based PKC systems - 4

State of the art

- GRS codes: solved by Sidelnikov-Shestakov
- Alternant codes: open
- Goppa codes: open
- AG codeds: work in progress by

Irene Márquez-Corbella
Edgar Martínez-Moro
Ruud Pellikaan
Diego Ruano

