
IMPLEMENTATION OF A CCA2-SECURE

VARIANT OF MCELIECE USING GENERALIZED

SRIVASTAVA CODES

Pierre-Louis Cayrel, Gerhard Hoffmann, Edoardo Persichetti

CBC Workshop - DTU

09 May 2012

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 1 / 49

OVERVIEW

OVERVIEW

Motivation
Preliminaries
The McEliece Cryptosystem
McEliece using Generalized Srivastava Codes
Transforming McEliece into a CCA2-secure scheme
Implementation results

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 2 / 49

Part I

MOTIVATION

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 3 / 49

MOTIVATION

MOTIVATION

In a few years time big quantum computers might be reality.

But then (Shor [14]):

RSA
DSA
ECC
Diffie-Hellman key exchange

and many others ... not secure !

Alternatives ?

Lattice-based cryptography (NTRU).
Hash-based cryptography.
Code-based cryptography (McEliece, Niederreiter).
Multivariate quadratic equations cryptography.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 4 / 49

MOTIVATION

MOTIVATION

In a few years time big quantum computers might be reality.

But then (Shor [14]):

RSA
DSA
ECC
Diffie-Hellman key exchange

and many others ... not secure !

Alternatives ?

Lattice-based cryptography (NTRU).
Hash-based cryptography.
Code-based cryptography (McEliece, Niederreiter).
Multivariate quadratic equations cryptography.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 4 / 49

MOTIVATION

MOTIVATION

In a few years time big quantum computers might be reality.

But then (Shor [14]):

RSA
DSA
ECC
Diffie-Hellman key exchange

and many others ... not secure !

Alternatives ?

Lattice-based cryptography (NTRU).
Hash-based cryptography.
Code-based cryptography (McEliece, Niederreiter).
Multivariate quadratic equations cryptography.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 4 / 49

MOTIVATION

MOTIVATION

In a few years time big quantum computers might be reality.

But then (Shor [14]):

RSA
DSA
ECC
Diffie-Hellman key exchange

and many others ... not secure !

Alternatives ?

Lattice-based cryptography (NTRU).
Hash-based cryptography.
Code-based cryptography (McEliece, Niederreiter).
Multivariate quadratic equations cryptography.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 4 / 49

MOTIVATION

MOTIVATION

In a few years time big quantum computers might be reality.

But then (Shor [14]):

RSA
DSA
ECC
Diffie-Hellman key exchange

and many others ... not secure !

Alternatives ?

Lattice-based cryptography (NTRU).
Hash-based cryptography.
Code-based cryptography (McEliece, Niederreiter).
Multivariate quadratic equations cryptography.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 4 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

MOTIVATION

MCELIECE CRYPTOSYSTEM

McEliece: first cryptosystem using error correcting codes.

Since 1978 unbroken in its original version for reasonable
parameters.

More efficient than e.g. RSA [12].

No known vulnerabilities against quantum computers.

Drawback: relatively large keys (around 1 MByte).

Goal: reduce the public key size.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 5 / 49

Part II

PRELIMINARIES

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 6 / 49

LINEAR CODES

SUBFIELD SUBCODES

Let C be a code of length n and dimension k over F2u .

Consider a proper subfield F2λ of F2u , where u = λm.

Consider all codewords c ∈ C with coordinates in F2λ , that is:

C|F2λ
:= C ∩ Fn

2λ .

Then C|F2λ
is called a subfield subcode.

Set from now on q = 2λ, m > 1 the extension degree of F2u over F2λ .

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 7 / 49

LINEAR CODES

SUBFIELD SUBCODES

Let C be a code of length n and dimension k over F2u .

Consider a proper subfield F2λ of F2u , where u = λm.

Consider all codewords c ∈ C with coordinates in F2λ , that is:

C|F2λ
:= C ∩ Fn

2λ .

Then C|F2λ
is called a subfield subcode.

Set from now on q = 2λ, m > 1 the extension degree of F2u over F2λ .

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 7 / 49

LINEAR CODES

GENERALIZED REED-SOLOMON CODES

Let x0, . . . , xn−1 be distinct (non-zero) elements of Fqm .

Let y0, . . . , yn−1 be non-zero elements of Fqm .

A Generalized Reed-Solomon GRSk (x , y) code over Fqm is the linear
code having the parity-check matrix HGRS defined by

HGRS =


1 1 . . . 1
x0 x1 . . . xn−1

x2
0 x2

1 . . . x2
n−1

...
...

...
...

xn−k−1
0 xn−k−1

1 . . . xn−k−1
n−1




y0 0 . . . 0
0 y1 . . . 0
...

...
. . .

...
0 0 0 yn−1



= vdm(x) · diag(y).

(1)

Many important codes in code-based cryptography are subfield
subcodes of GRS codes:

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 8 / 49

LINEAR CODES

GENERALIZED REED-SOLOMON CODES

Let x0, . . . , xn−1 be distinct (non-zero) elements of Fqm .

Let y0, . . . , yn−1 be non-zero elements of Fqm .

A Generalized Reed-Solomon GRSk (x , y) code over Fqm is the linear
code having the parity-check matrix HGRS defined by

HGRS =


1 1 . . . 1
x0 x1 . . . xn−1

x2
0 x2

1 . . . x2
n−1

...
...

...
...

xn−k−1
0 xn−k−1

1 . . . xn−k−1
n−1




y0 0 . . . 0
0 y1 . . . 0
...

...
. . .

...
0 0 0 yn−1



= vdm(x) · diag(y).

(1)

Many important codes in code-based cryptography are subfield
subcodes of GRS codes:

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 8 / 49

LINEAR CODES

SUBFIELD SUBCODES OF GRS CODES

Alternant codes Goppa codes

Srivastava codes

Generalized Srivastava codes

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 9 / 49

LINEAR CODES

ALTERNANT CODES A(x , y)

An alternant code A(x , y) is defined as

A(x , y) = GRSk (x , y) ∩ Fn
q ,

where x , y ∈ Fn
qm as before.

Because A(x , y) is a subcode of GRSk (x , y), an alternant decoder
can use the parity check matrix HGRS of (1), i.e.

HGRS = vdm(x) · diag(y).

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 10 / 49

Part III

MCELIECE AND VARIANTS

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 11 / 49

CLASSICAL MCELIECE (1978)

THE INGREDIENTS

Irreducible binary [n, k ,d] Goppa code Γ (L,g)

Minimum distance d ≥ 2τ + 1, τ = deg g(X)

Secret:

Generator matrix G ∈ Fk×n
2 of Γ (L,g)

Random binary non-singular matrix S ∈ Fk×k
2 .

Random permutation matrix P ∈ Fn×n
2 .

Private key: (S,DΓ (L,g),P)

DΓ (L,g) efficient decoder for Γ (L, g)

Public:

The equivalent generator matrix Ĝ = SGP ∈ Fk×n
2m for Γ (L,g)

Public key: Ĝ

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 12 / 49

CLASSICAL MCELIECE (1978)

THE INGREDIENTS

Irreducible binary [n, k ,d] Goppa code Γ (L,g)

Minimum distance d ≥ 2τ + 1, τ = deg g(X)

Secret:

Generator matrix G ∈ Fk×n
2 of Γ (L,g)

Random binary non-singular matrix S ∈ Fk×k
2 .

Random permutation matrix P ∈ Fn×n
2 .

Private key: (S,DΓ (L,g),P)

DΓ (L,g) efficient decoder for Γ (L, g)

Public:

The equivalent generator matrix Ĝ = SGP ∈ Fk×n
2m for Γ (L,g)

Public key: Ĝ

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 12 / 49

CLASSICAL MCELIECE (1978)

THE INGREDIENTS

Irreducible binary [n, k ,d] Goppa code Γ (L,g)

Minimum distance d ≥ 2τ + 1, τ = deg g(X)

Secret:

Generator matrix G ∈ Fk×n
2 of Γ (L,g)

Random binary non-singular matrix S ∈ Fk×k
2 .

Random permutation matrix P ∈ Fn×n
2 .

Private key: (S,DΓ (L,g),P)

DΓ (L,g) efficient decoder for Γ (L, g)

Public:

The equivalent generator matrix Ĝ = SGP ∈ Fk×n
2m for Γ (L,g)

Public key: Ĝ

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 12 / 49

CLASSICAL MCELIECE (1978)

HOW IT WORKS

Encryption:
Choose e ∈ Fn

2 of weight τ .

c = mĜ + e

Decryption:
cP−1 = mSG + eP−1

mSG = DΓ (L,g)(cP−1)

Let J ⊆ {1, . . . ,n} be a set such that G·J is invertible.
m = (mSG)J(G·J)−1S−1

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 13 / 49

CLASSICAL MCELIECE (1978)

HOW IT WORKS

Encryption:
Choose e ∈ Fn

2 of weight τ .

c = mĜ + e

Decryption:
cP−1 = mSG + eP−1

mSG = DΓ (L,g)(cP−1)

Let J ⊆ {1, . . . ,n} be a set such that G·J is invertible.
m = (mSG)J(G·J)−1S−1

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 13 / 49

FURTHER DEFINITIONS

GOPPA CODES

Let g(X) ∈ Fqm [X] be a polynomial of degree τ = n − k .
(Goppa polynomial).

Fix L = (L0, . . . ,Ln−1),Li ∈ Fqm , such that g(Li) 6= 0 for all i .

The Goppa code Γ (L,g) is then defined as

Γ (L,g) := A(L, y) ,

where yi = g(Li)
−1.

Under certain conditions, Goppa codes allow for a compact
representation in quasi-dyadic form [7].

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 14 / 49

FURTHER DEFINITIONS

GOPPA CODES

Let g(X) ∈ Fqm [X] be a polynomial of degree τ = n − k .
(Goppa polynomial).

Fix L = (L0, . . . ,Ln−1),Li ∈ Fqm , such that g(Li) 6= 0 for all i .

The Goppa code Γ (L,g) is then defined as

Γ (L,g) := A(L, y) ,

where yi = g(Li)
−1.

Under certain conditions, Goppa codes allow for a compact
representation in quasi-dyadic form [7].

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 14 / 49

FURTHER DEFINITIONS

DYADIC MATRICES

Defined by a signature h := (h0, . . . ,hn−1)

If n is a power of two, the matrix is highly regular, for example

n = 23,h = (A,B,C,D,E ,F ,G,H) we have:

∆(h) := (hi⊕j) :=



A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A


Quasi-dyadic matrix: block matrix with dyadic submatrices.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 15 / 49

FURTHER DEFINITIONS

DYADIC MATRICES

Defined by a signature h := (h0, . . . ,hn−1)

If n is a power of two, the matrix is highly regular, for example

n = 23,h = (A,B,C,D,E ,F ,G,H) we have:

∆(h) := (hi⊕j) :=



A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A



Quasi-dyadic matrix: block matrix with dyadic submatrices.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 15 / 49

FURTHER DEFINITIONS

DYADIC MATRICES

Defined by a signature h := (h0, . . . ,hn−1)

If n is a power of two, the matrix is highly regular, for example

n = 23,h = (A,B,C,D,E ,F ,G,H) we have:

∆(h) := (hi⊕j) :=



A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A


Quasi-dyadic matrix: block matrix with dyadic submatrices.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 15 / 49

FURTHER DEFINITIONS

GOPPA CODES IN QUASI-DYADIC FORM

Generator matrix G for a quasi-dyadic Goppa code
(n code length, k dimension, ` block size):

Only the signatures (orange) will be kept in memory.

Ik

n

`

FIGURE: k × n generator matrix G

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 16 / 49

MODERN MCELIECE

A MODERN MCELIECE VARIANT

Classical:
Secret random permutation matrix P and invertible matrix S
Public a generator for the code

New:
Secret the support L and generator polynomial g
Public a generator for the subcode

No random permutation matrix P
No invertible matrix S
G in systematic form

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 17 / 49

MODERN MCELIECE

A MODERN MCELIECE VARIANT

Classical:
Secret random permutation matrix P and invertible matrix S
Public a generator for the code

New:
Secret the support L and generator polynomial g
Public a generator for the subcode

No random permutation matrix P
No invertible matrix S
G in systematic form

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 17 / 49

MODERN MCELIECE

MODERN MCELIECE: HOW IT WORKS

Encryption:
Choose e ∈ Fn

qm of weight τ .
c = mG + e.

Decryption:
Use secret L and g(X) to obtain a parity-check matrix H.
Compute syndrome σ = HcT = HeT .
Decode into error vector e.
Read m from the first k positions of c − e.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 18 / 49

MODERN MCELIECE

MODERN MCELIECE: HOW IT WORKS

Encryption:
Choose e ∈ Fn

qm of weight τ .
c = mG + e.

Decryption:
Use secret L and g(X) to obtain a parity-check matrix H.
Compute syndrome σ = HcT = HeT .
Decode into error vector e.
Read m from the first k positions of c − e.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 18 / 49

MODERN MCELIECE

FOPT

Quasi-dyadic structure of G: is it still secure ?

Algebraic Cryptanalysis of McEliece Variants with Compact Keys
(J.-C. Faugère and A. Otmani and L. Perret and J.-P. Tillich) [2]

The attack has been applied successfully against almost all the challenges
proposed.

It fails in the binary case.

It can not exploit the structure of the code.

Computed Gröbner basis is trivial.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 19 / 49

MODERN MCELIECE

FOPT

Quasi-dyadic structure of G: is it still secure ?

Algebraic Cryptanalysis of McEliece Variants with Compact Keys
(J.-C. Faugère and A. Otmani and L. Perret and J.-P. Tillich) [2]

The attack has been applied successfully against almost all the challenges
proposed.

It fails in the binary case.

It can not exploit the structure of the code.

Computed Gröbner basis is trivial.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 19 / 49

MODERN MCELIECE

FOPT

Quasi-dyadic structure of G: is it still secure ?

Algebraic Cryptanalysis of McEliece Variants with Compact Keys
(J.-C. Faugère and A. Otmani and L. Perret and J.-P. Tillich) [2]

The attack has been applied successfully against almost all the challenges
proposed.

It fails in the binary case.

It can not exploit the structure of the code.

Computed Gröbner basis is trivial.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 19 / 49

MODERN MCELIECE

FOPT

Quasi-dyadic structure of G: is it still secure ?

Algebraic Cryptanalysis of McEliece Variants with Compact Keys
(J.-C. Faugère and A. Otmani and L. Perret and J.-P. Tillich) [2]

The attack has been applied successfully against almost all the challenges
proposed.

It fails in the binary case.

It can not exploit the structure of the code.

Computed Gröbner basis is trivial.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 19 / 49

MODERN MCELIECE

FOPT: IDEA OF THE ATTACK IN A NUTSHELL

Let G = (gi,j) a k × n public generator matrix (see Fig.(1)) of a Goppa
code, formed by `× ` blocks, i.e. k = k0`,n = n0`.

Goppa codes are alternant codes. Hence there exists a parity-check
matrix H like HGRS (see (1)), i.e.

H = {yjx i
j }.

Expanding the equation H ·GT = 0, we define the system

SYSTEM OF EQUATIONS

gi,0Y0X j
0 + · · ·+ gi,n−1Yn−1X j

n−1 = 0 (2)

where i = 0, . . . , k − 1, ` = 0, . . . , `− 1. [2, 8]

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 20 / 49

MODERN MCELIECE

FOPT: IDEA OF THE ATTACK IN A NUTSHELL
CONTINUED

Solving this system breaks the scheme!

One can show (again [2, 8]) that there are
n0 − 1 unknowns Yi

n0 −m linear equations involving only the Yi (j = 0 in (2)), where
m is the extension degree.
Hence we have n0 − 1− (n0 −m) = m − 1 “free” variables.

Once these are determined, the system is easy to solve.

The authors in [2] report that this number m should not be smaller
than 20. This would result in large extension fields and large keys.

How can we get out of this dilemma? Is it possible to generalize this
approach?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 21 / 49

MODERN MCELIECE

FOPT: IDEA OF THE ATTACK IN A NUTSHELL
CONTINUED

Solving this system breaks the scheme!

One can show (again [2, 8]) that there are
n0 − 1 unknowns Yi

n0 −m linear equations involving only the Yi (j = 0 in (2)), where
m is the extension degree.
Hence we have n0 − 1− (n0 −m) = m − 1 “free” variables.

Once these are determined, the system is easy to solve.

The authors in [2] report that this number m should not be smaller
than 20. This would result in large extension fields and large keys.

How can we get out of this dilemma? Is it possible to generalize this
approach?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 21 / 49

MODERN MCELIECE

FOPT: IDEA OF THE ATTACK IN A NUTSHELL
CONTINUED

Solving this system breaks the scheme!

One can show (again [2, 8]) that there are
n0 − 1 unknowns Yi

n0 −m linear equations involving only the Yi (j = 0 in (2)), where
m is the extension degree.
Hence we have n0 − 1− (n0 −m) = m − 1 “free” variables.

Once these are determined, the system is easy to solve.

The authors in [2] report that this number m should not be smaller
than 20. This would result in large extension fields and large keys.

How can we get out of this dilemma? Is it possible to generalize this
approach?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 21 / 49

Part IV

MCELIECE USING GENERALIZED

SRIVASTAVA CODES

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 22 / 49

GENERALIZED SRIVASTAVA CODES

GENERALIZED SRIVASTAVA CODES

Fix m,n, s, t ∈ N and a prime power q.

Let α = (α1, . . . , αn), w = (w1, . . . ,ws) be n + s distinct elements of
Fqm .

Let (z1, . . . , zn) be nonzero elements of Fqm .

The Generalized Srivastava (GSRV) code of order st and length n is
defined by a parity-check matrix of the form:

H =

 H1
H2

...
Hs

 ∈ Fst×n
qm (3)

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 23 / 49

GENERALIZED SRIVASTAVA CODES

GENERALIZED SRIVASTAVA CODES
CONTINUED

Each block is defined as:

Hi =



z1

α1 − wi
. . .

zn

αn − wi

z1

(α1 − wi)2 . . .
zn

(αn − wi)2

...
...

...

z1

(α1 − wi)t . . .
zn

(αn − wi)t


.

The exponent t is a parameter of the code.
Note: if t = 1, we have a Goppa code [5].

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 24 / 49

GENERALIZED SRIVASTAVA CODES

GENERALIZED SRIVASTAVA CODES
PROPERTIES

For a Generalized Srivastava Code we have:
Length n ≤ qm − s.
Dimension k ≥ n −mst ,
Minimum distance d ≥ st + 1.

But now one can show [8] that we do not have m − 1 free variables,
but rather a solution space of

mt − 1

free variables.

Advantage: increase t instead of m.
No need to use high extension degrees.

Keys stay reasonable small, while making FOPT less effective.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 25 / 49

GENERALIZED SRIVASTAVA CODES

GENERALIZED SRIVASTAVA CODES
PROPERTIES

For a Generalized Srivastava Code we have:
Length n ≤ qm − s.
Dimension k ≥ n −mst ,
Minimum distance d ≥ st + 1.

But now one can show [8] that we do not have m − 1 free variables,
but rather a solution space of

mt − 1

free variables.

Advantage: increase t instead of m.
No need to use high extension degrees.

Keys stay reasonable small, while making FOPT less effective.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 25 / 49

GENERALIZED SRIVASTAVA CODES

GENERALIZED SRIVASTAVA CODES
PROPERTIES

For a Generalized Srivastava Code we have:
Length n ≤ qm − s.
Dimension k ≥ n −mst ,
Minimum distance d ≥ st + 1.

But now one can show [8] that we do not have m − 1 free variables,
but rather a solution space of

mt − 1

free variables.

Advantage: increase t instead of m.
No need to use high extension degrees.

Keys stay reasonable small, while making FOPT less effective.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 25 / 49

Part V

TRANSFORMATION OF MCELIECE

INTO A CCA2-SECURE SCHEME

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 26 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

CCA2: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK

Interactive form of chosen-ciphertext attack:

Attacker sends a number of ciphertexts to be decrypted.
Uses the results of these decryptions to select subsequent
ciphertexts.

Goal: gradually reveal information

about an encrypted message, or
about the decryption key itself.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 27 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

CCA2: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK

Interactive form of chosen-ciphertext attack:

Attacker sends a number of ciphertexts to be decrypted.
Uses the results of these decryptions to select subsequent
ciphertexts.

Goal: gradually reveal information

about an encrypted message, or
about the decryption key itself.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 27 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

FUJISAKI-OKAMOTO TRANSFORMATION

HYBRID ENCRYPTION

Ehy
pk (m, σ) = Easym

pk (σ,K(σ,m)) || Esym
H(σ)(m)

Easym asymmetric encryption scheme
Esym symmetric encryption scheme
pk public key
H any hash function

(fixed-length output, key for symmetric scheme)
K another hash function

(variable-length output, input for asymmetric scheme)
σ a certain randomness
m message to encrypt/decrypt

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 28 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO

Easym McEliece.
Esym A one-time pad.
pk Public key for McEliece.

Then Easym
pk (σ,K(σ,m)) would read as σG +K(σ,m) .

K(σ,m) needs to be an error vector.

Transform K(σ,m) into an error vector of fixed weight ?
In principle: Possible - Use of Constant-Weight Encoding function.

Could we avoid this complication?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 29 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO

Easym McEliece.
Esym A one-time pad.
pk Public key for McEliece.

Then Easym
pk (σ,K(σ,m)) would read as σG +K(σ,m) .

K(σ,m) needs to be an error vector.

Transform K(σ,m) into an error vector of fixed weight ?
In principle: Possible - Use of Constant-Weight Encoding function.

Could we avoid this complication?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 29 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO

Easym McEliece.
Esym A one-time pad.
pk Public key for McEliece.

Then Easym
pk (σ,K(σ,m)) would read as σG +K(σ,m) .

K(σ,m) needs to be an error vector.

Transform K(σ,m) into an error vector of fixed weight ?
In principle: Possible - Use of Constant-Weight Encoding function.

Could we avoid this complication?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 29 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO

Easym McEliece.
Esym A one-time pad.
pk Public key for McEliece.

Then Easym
pk (σ,K(σ,m)) would read as σG +K(σ,m) .

K(σ,m) needs to be an error vector.

Transform K(σ,m) into an error vector of fixed weight ?
In principle: Possible - Use of Constant-Weight Encoding function.

Could we avoid this complication?

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 29 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO
CONTINUED

Using a technique introduced on lattices [6] we can swap the role of
the message and the randomness in the encryption process.

Then Easym
pk (σ,K(σ,m)) would read as K(σ,m)G + σ .

We need:
Length of K(σ,m) = rank k of G .

σ would be a random error vector of fixed weight.
Looks good so far: no transformation of K(σ,m).

But what about H ?

We need H(σ) to have the length k of the message.

There is a cool hash function doing the job of K and H plus
generating σ.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 30 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO
CONTINUED

Using a technique introduced on lattices [6] we can swap the role of
the message and the randomness in the encryption process.

Then Easym
pk (σ,K(σ,m)) would read as K(σ,m)G + σ .

We need:
Length of K(σ,m) = rank k of G .

σ would be a random error vector of fixed weight.
Looks good so far: no transformation of K(σ,m).

But what about H ?

We need H(σ) to have the length k of the message.

There is a cool hash function doing the job of K and H plus
generating σ.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 30 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO
CONTINUED

Using a technique introduced on lattices [6] we can swap the role of
the message and the randomness in the encryption process.

Then Easym
pk (σ,K(σ,m)) would read as K(σ,m)G + σ .

We need:
Length of K(σ,m) = rank k of G .

σ would be a random error vector of fixed weight.
Looks good so far: no transformation of K(σ,m).

But what about H ?

We need H(σ) to have the length k of the message.

There is a cool hash function doing the job of K and H plus
generating σ.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 30 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO
CONTINUED

Using a technique introduced on lattices [6] we can swap the role of
the message and the randomness in the encryption process.

Then Easym
pk (σ,K(σ,m)) would read as K(σ,m)G + σ .

We need:
Length of K(σ,m) = rank k of G .

σ would be a random error vector of fixed weight.
Looks good so far: no transformation of K(σ,m).

But what about H ?

We need H(σ) to have the length k of the message.

There is a cool hash function doing the job of K and H plus
generating σ.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 30 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

KECCAK - SPONGE CONSTRUCTION

Keccak hash function(s):
Finalist of NIST SHA-3 contest.
Very fast.
Extremely flexible: can be used as hash function (arbitrary-length
output) and as stream cipher.

FIGURE: The sponge construction [3]

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 31 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

APPLYING FUJISAKI-OKAMOTO
CONTINUED

Let’s summarize:

Easym McEliece.
Esym A one-time pad.
pk Public key for McEliece.
H Keccak.
K Keccak.
σ Error vector of fixed weight.
m Message to encrypt/decrypt.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 32 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

FUJISAKI-OKAMOTO TRANSFORMATION: ENCODING

To encrypt a message m, we do:

Step 1 Generate a random error vector σ of weight w .

Step 2 Set r := K(σ,m).

Step 3 Encrypt r with McEliece: c1 = K(σ,m)G ⊕ σ = rG ⊕ σ.

Step 4 Hash σ to be used as the key for a one-time pad.

Step 5 Symmetric encryption: c2 = H(σ)⊕m.

Step 6 Final ciphertext: c = c1||c2.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 33 / 49

TRANSFORMATION OF MCELIECE INTO A CCA2-SECURE SCHEME

FUJISAKI-OKAMOTO TRANSFORMATION: DECODING

To decrypt a ciphertext c, we do:

Step 1 Upon receiving c, parse it into the parts c1 and c2.

Step 2 Decrypt c1 using McEliece. Let σ̂ := Dasym
sk (c1). 1

Step 3 Decrypt c2 using H(σ̂) as key. Let m̂ := Dsym
H(σ̂) = c2 ⊕H(σ̂).

Step 4 Hash σ̂ and m̂ using K. Let r̂ := K(σ̂, m̂).

Step 5 Check if c1 equals Easym
pk (σ̂, r̂) = r̂G + σ̂.

Step 6 In case it is true, output m = m̂. Otherwise reject.

1We assume that decoding actually works.
(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 34 / 49

Part VI

RESULTS OF IMPLEMENTATIONS IN C

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 35 / 49

RESULTS IMPLEMENTATIONS IN C

PLATFORMS

Intel(R) Core(TM)2 Duo CPU E8400@3.00GHz

AVR Atmel Atmega 256A3

8-bit microcontroller, running at 32 MHz
256 KByte flash memory
16 KByte SRAM memory

Chosen to have a comparison with recent results of S. Heyse [4] at
PQCrypto 2011.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 36 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON A PC

PLAIN MCELIECE
USING GENERALIZED SRIVASTAVA CODES

TABLE: Results on Intel(R) Core(TM)2 Duo CPU E8400@3.00GHz

Base Field m n k s t Errors Enc.[ms] Dec.[ms] E. & D.[ms] Sec.

F25 2 512 256 24 8 64 0.092 1.234 1.320 280

F24 3 768 432 24 7 56 0.179 1.578 1.753 280

F25 2 768 416 24 11 88 0.188 2.491 2.677 2112

F25 2 992 416 25 9 144 0.287 5.486 5.779 2128

m = extension degree
n = code length
k = code dimension
s = block size

t = exponent
Enc. = encoding operation
Dec. = decoding operation
E & D. = encoding/decoding cycle

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 37 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON A PC

CCA2-SECURE MCELIECE
USING GENERALIZED SRIVASTAVA CODES

TABLE: Results on Intel(R) Core(TM)2 Duo CPU E8400@3.00GHz

Base Field m n k s t Errors Enc.[ms] Dec.[ms] Sec.

F25 2 512 256 24 8 64 0.114 1.382 280

F24 3 768 432 24 7 56 0.213 1.814 280

F25 2 768 416 24 11 88 0.216 2.721 2112

F25 2 992 416 25 9 144 0.323 5.914 2128

m = extension degree
n = code length
k = code dimension
s = block size

t = exponent
Enc. = encoding operation
Dec. = decoding operation
E & D. = encoding/decoding cycle

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 38 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON ATXMEGA256A3

PARAMETERS ON THE AVR

For the AVR, we used a setting with security of 280 bit operations:

Extension field F212

Base field F24

Extension degree m 3
Code length n 768
Code dimension k 432
Block size s 16
Exponent t 7
Number of errors w 56

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 39 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON ATXMEGA256A3

MEMORY REQUIREMENTS

G 9.072 bytes

H 172.032 bytes

TABLE: Memory requirements for public/private keys G resp. H

For our implementation, we wasted some memory:

G really needs 9.072× 4 bits = 4.536 bytes.

H really needs 86.016× 12 bits = 129.024 bytes.

The ATxmega256A3 has 256 KByte flash memory.

The device has been chosen mainly for comparison with [4].

Using a device with 192 KByte possible.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 40 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON ATXMEGA256A3

ENCODING: PLAIN MCELIECE
USING GENERALIZED SRIVASTAVA CODES

Cycles Comment

Start 3.587 Device initialization.

Init PRNG 139.250 Seed Keccak. Absorbing phase.

Init e 317.003 Generate error vector e ∈ Fn
24 with weight 56.

Squeezing phase of Keccak.

Init m 4.313 Load the message m

mG 3.418.292 Encode message m ∈ Fk
24 .

mG + e 8.818 Add code and error vector.

3.891.263 Cycles for encoding operation (122 ms).

TABLE: Time for encoding operation mG + e = c.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 41 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON ATXMEGA256A3

DECODING: PLAIN MCELIECE
USING GENERALIZED SRIVASTAVA CODES

Cycles Comment

cHT = s 6.910.742 Compute syndrome s ∈ Fn−k
212 .

σ(X), ω(X) 955.597 Solve the key equation to
obtain the error locator σ(X)

and error evaluator ω(X).

σ(X) 2.061.066 Compute roots of σ(X), i.e. the
error positions.

ω(X) 611.898 Evaluate ω(X) at error positions
to obtain error vector e ∈ Fn

24 .

c + e 8.641 Correct the ciphertext.

10.547.944 Cycles for decoding operation (330 ms).

TABLE: Time for decoding operation.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 42 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON AN ATXMEGA256A3

ENCODING: CCA2-SECURE MCELIECE
USING GENERALIZED SRIVASTAVA CODES

Cycles Comment

Start 3.591 Device initialization.
Init PRNG 139.253 Seed Keccak. Absorbing phase.

Init σ 322.109 Generate error vector e ∈ Fn
24 with weight 56.

Squeezing phase of Keccak.
Init m 1.019 Load the message m
r = K(σ,m) 281.285 Hash (σ,m) to obtain message r .
rG 3.426.700 Encode message r ∈ Fk

24 .
H(σ) 137.704 Hash the error vector σ.
H(σ) + m 1.814 Add H(σ) and m to obtain c2.
rG + σ 1.244 Add code and error vector to obtain c1.

4.314.719 Cycles for encoding operation (135 ms).

TABLE: Time for encoding operation mG + e = c.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 43 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON AN ATXMEGA256A3

DECODING: CCA2-SECURE MCELIECE
USING GENERALIZED SRIVASTAVA CODES

Cycles Comment

c1HT = s 7.029.844 Compute syndrome s ∈ Fn−k
212 .

σ(X), ω(X) 954.522 Solve the key equation to
obtain the error locator σ(X)

and error evaluator ω(X).

σ(X) 2.031.514 Compute roots of σ(X), i.e. the
error positions.

ω(X) 611.944 Evaluate ω(X) at error positions
to obtain error vector σ̂ ∈ Fn

24 .

H(σ̂) 147.822 Hash decoded error vector σ̂.

TABLE: Time for decoding operation (part 1).

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 44 / 49

RESULTS IMPLEMENTATIONS IN C RESULTS ON AN ATXMEGA256A3

DECODING CONTINUED: CCA2-SECURE MCELIECE
USING GENERALIZED SRIVASTAVA CODES

Cycles Comment

H(σ̂) + c2 = m̂ 1.585 Add H(σ̂) and c2 to obtain m̂.

r̂ = K(σ̂, m̂) 282.066 Hash (σ̂, m̂) to obtain message r̂ .

r̂G 3.426.721 Encode message r̂ ∈ Fk
24 .

r̂G + σ̂ = ĉ1 1.113 Correct the ciphertext to obtain ĉ1.

c1 = ĉ1 9.207 Check if c1 = ĉ1.

14.496.338 Cycles for decoding operation (453 ms).

TABLE: Time for decoding operation (part 2).

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 45 / 49

RESULTS IMPLEMENTATIONS IN C

SUMMARY AND FUTURE WORK

McEliece using Generalized Srivastava Codes is a viable
alternative to binary quasi-dyadic Goppa codes.

It is possible to transform McEliece into a CCA2-secure scheme
with only a small loss in runtime.

The implementation is fast and does not need a constant-weight
encoding function.

Depending on the interest, we might give assembler
implementations on AVR and MMIX.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 46 / 49

ACKNOWLEDGEMENTS

Finally, we like to thank Paulo S. L. M. Barreto (et al.) to provide
us insight into their library SBCrypt [1].

It served as invaluable starting point for the C implementation.

Thanks!

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 47 / 49

REFERENCES

P. S. L. M. Barreto, R. Misoczki, and L. B. Villas Boas.

SBCRYPT - Syndrome-Based Cryptography Library.
Private communication.

J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich.

Algebraic Cryptanalysis of McEliece Variants with Compact Keys.
In EUROCRYPT, pages 279–298, 2010.

G. Bertoni and J. Daemen and M. Peeters and G. Van Assche.

The Keccak sponge function family.
http://keccak.noekeon.org/.

S. Heyse.

Implementation of McEliece based on Quasi-Dyadic Goppa Codes for Embedded Devices.
2011.
Accepted paper at PQCrypto 2011. To appear.

F. J. MacWilliams and N. J. A. Sloane.

The Theory of Error-Correcting Codes, volume 16.
North-Holland Mathematical Library, 1977.

D. Micciancio.

Improving lattice based cryptosystems using the hermite normal form.
In CaLC, pages 126–145, 2001.

R. Misoczki and P. S. L. M. Barreto.

Compact McEliece keys from Goppa codes.
In Selected Areas in Cryptography – SAC’2009, volume 5867 of LNCS, pages 276–392. Springer, 2009.

E. Persichetti.

Compact McEliece keys based on Quasi-Dyadic Srivastava codes.
Cryptology ePrint Archive, Report 2011/179, 2011.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 48 / 49

REFERENCES
CONTINUED

P. S. L. M. Barreto.

Post-Quantum Cryptography, 2009.
PQC-4.pdf. Private communication.

E. Fujisaki and T. Okamoto.

Secure Integration of Asymmetric and Symmetric Encryption Schemes.
In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 537–554,
London, UK, 1999. Springer-Verlag.

S. Heyse.

Implementation of McEliece based on Quasi-Dyadic Goppa Codes for Embedded Devices.
2011.
Accepted paper at PQCrypto 2011. To appear.

S. Heyse.

Implementational Aspects of Code-based Cryptography for Embedded Systems, 2011.
http://www.win.tue.nl/cccc/cbc/slides/Stefan-Heyse.pdf.

F. J. MacWilliams and N. J. A. Sloane.

The Theory of Error-Correcting Codes, volume 16.
North-Holland Mathematical Library, 1977.

P. W. Shor.

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
SIAM Journal on Computing, 26:1484–1509, 1995.

Wikipedia.

CCA2, 2011.
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack.

(CBC WORKSHOP - DTU) CCA2-MCELIECE USING GSRV CODES 09 MAY 2012 49 / 49

http://www.win.tue.nl/cccc/cbc/slides/Stefan-Heyse.pdf
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack

	 Overview
	Motivation
	Motivation

	Preliminaries
	Definitions

	McEliece and variants
	Classical McEliece: The ingredients
	Further definitions
	Modern McEliece

	McEliece using Generalized Srivastava Codes
	Generalized Srivastava Codes

	Transformation of McEliece into a CCA2-secure scheme
	CCA2

	Results of implementations in C
	Platforms
	McEliece using Generalized Srivastave Codes
	CCA2-McEliece using Generalized Srivastava Codes
	McEliece using Generalized Srivastave Codes
	Memory requirements
	Encoding
	Decoding
	Encoding CCA2-McEliece
	Decoding CCA2-McEliece
	Decoding CCA2-McEliece cont.

	Achknowledgements
	References

