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Code Equivalence
of Binary Codes

CODE EQUIVALENCE Problem

» Two linear codes C and C’ of length n are (permutation)-equivalent
if for some permutation o of I, = {1,..., n} we have:

C' = 0(C) = {(xo-1(i))iet, | (xi)ies, € C}
Notation: C ~ C'.

» Given two linear codes C and C’, do we have C ~ C’?

Motivation
CODE EQUIVALENCE is difficult to decide:

1. not NP-complete
2. at least as hard as GRAPH ISOMORPHISM
Reference: Petrank and Roth, IEEE-IT, 1997

Goal
Given two linear codes C ~ C’, find o such that C" = ¢(C)

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 3/15



Invariants and Signatures

for a given Linear Code
Invariants of a Code

» A mapping V is an invariant if C ~ C' = V(C) = V()
» Any invariant is a global property of a code

Weight Enumerators are Invariants
C~ C' = We(X) = Wer(X) or We(X) £ Wer(X) = C o C'
» We(X) =YY", AX and A;=|{ce C | w(c)=i}|

Signature of a Code
> A mapping S is a signature if S(o(C),o(i)) = S(C, i)
> Property of the code and one of its positions (local property)

Building a Signature from an Invariant

1. If Vis an invariant, then Sy : (C, i) — V(Cy;y) is a signature
2. where Cyjy is obtained by puncturing the code C on i
3. If ' =0(C) = V(Ci) = V(C{U(i)}), Viel,ie V=W
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The Support Splitting Algorithm (1)
Design of the Algorithm
Discriminant Signatures

1. A signature S is discriminant for C if 37 # j,S(C,i) # S(C,J)
2. S'is fully discriminant for C if Vi # j, S(C,i) # S(C,J)

The Procedure

» From a given signature S and a given code C, we wish to build a
sequence Sg = 5,5y, ..., S, of signatures of increasing
“discriminancy” such that S, is fully discriminant for C

» Achieved by succesive refinements of the signature S
» Reference: Sendrier, IEEE-IT, 2000

Statement

1. SSA(C) returns a labeled partition P(S, C) of I,

2. Assuming the existence of a fully discriminant signature, SSA(C)
recovers the desired permutation o of C’ = o(C)
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An Example of a Fully Discriminant Signature

Statement
If ¢’ =0(C) and S is fully discriminant for C then Vi € I,
3 unique j € I, such that S(C,i) = S(C’,j) and o(i) =

The Example

C = {1110,0111,1010} and C’ = {0011,1011,1101}
Cq1y = {110,111,010} Wep, (X) = X + X2+ X3

Cpoy = {110,011}
C(3y = {110,011,100}
Ciay = {111,011,101}

C{:l} = {011,101}

Clpy = {011,111,101}
C{sy = {001,101,111}
Cl,y = {001,101,110}
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C' = 0(C) where o(1) =3, 0(2) =1,

Wep, (X) = 2X2

WC{3}( )=X+ 2X2

Wep (X) = 2X2 + X3

Wer, (X) = 2X2

WC/ (X) =2X2 4+ X3

WC/ (X) X+ X2+ X3
) = X + 2X2

0(3) =4 and 0(4) =2
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An Example of a Refined Signature

The Example

C = {o01101,01011,01110,10101,11110}

¢’ = {10101,00111,10011,11100,11011}
We (X)) = X243x° = We, ()=o) =2
We (X)) = 2X7+3X3 = We, (X) =o(4)=4
We, (X) = 32+ X2+ X8 = w%}(x) = o(5)=3
Wep, (X)) = 3X%+2X3 = wch}(x)
Weyy (X) = 3X2+42X° = We (0

Refinement: Positions {2,3} in C and {1,5} in C’ cannot be discriminated, but

Weg (X)) = 3% = We,,, (X)) =o({1,2)={2,5)
Wepy(X) = X42XF4X = We () = o({1,3) = 2.1}

Thus 0(1) =2, 0(2) =5, 0(3) =1, 0(4) =4 and o(5) =3
Fundamental Properties of SSA
1. If C"=0(C) then P'(S,C") =o(P(S, C))
2. The output of SSA(C) where C =< G > is independent of G
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The Support Splitting Algorithm (11)

Practical Issues

A Good Signature
The mapping (C, i) — Wyyc)(X) where H(C) = CN C* is a signature
which is, for random codes,

> easy to compute because of the small dimension (Sendrier, 1997)
> discriminant, i.e. Wiy (c)(X) and Wiy (¢;)(X) are “often” different

Algorithmic Cost

Let C be a binary code of length n, and let h = dim(#(C)):
» First step: O(n%) + O(n2")
» Each refinement: O(hn?) + O(n2")
> Number of refinements: =~ logn

Total (heuristic) complexity: O(n® + 2"n?log n)

Implementation
Currently developed on GAP and MAGMA
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Structural Attacks on McEliece-like Cryptosystems

Binary Goppa Code
ant C GF(2™) and g(z) € GF(2™)[z] square-free of
degree t with g(a;) # 0.

6) € GF2™) | 0, 75 =0 mod g(2))

McEliece and Niederreiter Cryptosystems

LetL:{al,...,

ML g)={(a.

» [ a t-error correcting binary Goppa code

McEliece Niederreiter
secret key | gen. matrix Gg of I | parity check matrix Hy of [
permutation matrix P permutation matrix P
public key G = SGyP H = UHyP

Attacking McEliece Cryptosystem with SS.A

1. Enumeration of all polynomial g of a family G of ['(L, g) and check
equivalence with the public code

2. There are 249855 (m = 1024, t = 524) binary Goppa codes!
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Weak Keys in the McEliece Cryptosystem

Weak Keys

Binary Goppa codes with binary generator polynomials g
Detection of Weak Keys with SS.A
1. Compute SSA(C) =P(S, C) where C is the public code

2. If the cardinalities of the cells of P are equal to the cardinalities of
the conjugacy cosets of L then C ~ (L, g) where g has binary
coefficients (with a high probability)

Enumerative Attack with SS.A

1. For all binary polynomial g of given degree t compute
SSA(F(L,g)) =P'(S,T(L g))
2. IfP(S,T(L,g)) ~P(S, C) then return g

3. Efficient for I'(L, g) of length 1024 with g of degree 50 using
idempotent subcodes (Loidreau and Sendrier, IEEE-IT, 2001)
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Research Problems
Related to Coding Theory

CODE EQUIVALENCE over GF(q), ¢ > 2
Two linear codes C and C’ of length n are equivalent over GF(q) if C’
can be obtained from C by a series of transformations:

1. Permutation of the codeword positions

2. Multiplication in a position by non-zero elements of GF(q)

3. Application of field automorphism to all codeword positions

Research Problem
Given C and C’ decide C ~ C’ over GF(q)?

Current Approach

Generalized SSA:
1. Codes with non-trivial automorphism groups
2. Codes with large hulls (i.e., self-dual, C = C*)
3. ...
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Research Problems
Related to Code-based Cryptography

Research Problem
Measure the key security of code-based cryptosystems over GF(q)

Wild McEliece Cryptosystem
Proposed by Bernstein, Lange and Peters, SAC, 2010
> Uses wild Goppa codes (g is in Fgm|[x])
» Estimation of the key security with the generalized SS.A?

Research Problem
Other structural attacks for code-based cryptosystems?

Detection of Weak Keys
Apply SSA for other (sub)-families of hidden codes
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Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm
for solving the CODE EQUIVALENCE problem for the binary case.

2. We showed a structural attack of SSA to code-based cryptosystems
(McEliece, Niederreiter).
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Future Work

Solve (some) of the research problems..!
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Questions - Comments

Dimitris E. Simos (INRIA)

Thanks for your Attention!
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