
The Support Splitting Algorithm
and its Application to Code-based Cryptography

Dimitris E. Simos
(joint work with Nicolas Sendrier)

Project-Team SECRET
INRIA Paris-Rocquencourt

May 9, 2012
3rd Code-based Cryptography Workshop

Technical University of Denmark
Lyngby, Denmark

1/15

Outline of the Talk

Support Splitting Algorithm
Mechanics
Examples

Applications
McEliece Cryptosystem
Research Problems

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 2/15

Outline of the Talk

Support Splitting Algorithm
Mechanics
Examples

Applications
McEliece Cryptosystem
Research Problems

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 2/15

Code Equivalence
of Binary Codes

Code Equivalence Problem

I Two linear codes C and C ′ of length n are (permutation)-equivalent
if for some permutation σ of In = {1, . . . , n} we have:
C ′ = σ(C) = {(xσ−1(i))i∈In | (xi)i∈In ∈ C}
Notation: C ∼ C ′.

I Given two linear codes C and C ′, do we have C ∼ C ′?

Motivation
Code equivalence is difficult to decide:

1. not NP-complete

2. at least as hard as Graph Isomorphism

Reference: Petrank and Roth, IEEE-IT, 1997

Goal
Given two linear codes C ∼ C ′, find σ such that C ′ = σ(C)

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 3/15

Invariants and Signatures
for a given Linear Code

Invariants of a Code

I A mapping V is an invariant if C ∼ C ′ ⇒ V(C) = V(C ′)
I Any invariant is a global property of a code

Weight Enumerators are Invariants
C ∼ C ′ ⇒WC (X) =WC ′(X) or WC (X) 6=WC ′(X)⇒ C 6∼ C ′

I WC (X) =
∑n

i=0 AiX
i and Ai =| {c ∈ C | w(c) = i} |

Signature of a Code

I A mapping S is a signature if S(σ(C), σ(i)) = S(C , i)
I Property of the code and one of its positions (local property)

Building a Signature from an Invariant

1. If V is an invariant, then SV : (C , i) 7→ V(C{i}) is a signature
2. where C{i} is obtained by puncturing the code C on i
3. If C ′ = σ(C)⇒ V(C{i}) = V(C ′{σ(i)}), ∀ i ∈ In, i.e. V =W

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 4/15

The Support Splitting Algorithm (I)
Design of the Algorithm

Discriminant Signatures

1. A signature S is discriminant for C if ∃ i 6= j ,S(C , i) 6= S(C , j)

2. S is fully discriminant for C if ∀ i 6= j ,S(C , i) 6= S(C , j)

The Procedure

I From a given signature S and a given code C , we wish to build a
sequence S0 = S ,S1, . . . ,Sr of signatures of increasing
“discriminancy” such that Sr is fully discriminant for C

I Achieved by succesive refinements of the signature S

I Reference: Sendrier, IEEE-IT, 2000

Statement

1. SSA(C) returns a labeled partition P(S ,C) of In

2. Assuming the existence of a fully discriminant signature, SSA(C)
recovers the desired permutation σ of C ′ = σ(C)

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 5/15

An Example of a Fully Discriminant Signature

Statement
If C ′ = σ(C) and S is fully discriminant for C then ∀ i ∈ In
∃ unique j ∈ In such that S(C , i) = S(C ′, j) and σ(i) = j

The Example

C = {1110, 0111, 1010} and C ′ = {0011, 1011, 1101}
C{1} = {110, 111, 010} → WC{1}(X) = X + X 2 + X 3

C{2} = {110, 011} → WC{2}(X) = 2X 2

C{3} = {110, 011, 100} → WC{3}(X) = X + 2X 2

C{4} = {111, 011, 101} → WC{4}(X) = 2X 2 + X 3
C ′{1} = {011, 101} → WC ′{1}

(X) = 2X 2

C ′{2} = {011, 111, 101} → WC ′{2}
(X) = 2X 2 + X 3

C ′{3} = {001, 101, 111} → WC ′{3}
(X) = X + X 2 + X 3

C ′{4} = {001, 101, 110} → WC ′{4}
(X) = X + 2X 2

C ′ = σ(C) where σ(1) = 3, σ(2) = 1, σ(3) = 4 and σ(4) = 2

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 6/15

An Example of a Refined Signature
The Example

C = {01101, 01011, 01110, 10101, 11110}
C ′ = {10101, 00111, 10011, 11100, 11011}

WC{1} (X) = X 2 + 3X 3 = WC′{2}
(X) ⇒ σ(1) = 2

WC{4} (X) = 2X 2 + 3X 3 = WC′{4}
(X) ⇒ σ(4) = 4

WC{5} (X) = 3X 2 + X 3 + X 4 = WC′{3}
(X) ⇒ σ(5) = 3

WC{2} (X) = 3X 2 + 2X 3 = WC′{1}
(X)

WC{3} (X) = 3X 2 + 2X 3 = WC′{5}
(X)

Refinement: Positions {2, 3} in C and {1, 5} in C ′ cannot be discriminated, but WC{1,2} (X) = 3X 2 = WC′{2,5}
(X) ⇒ σ({1, 2}) = {2, 5}

WC{1,3} (X) = X + 2X 2 + X 3 = WC′{2,1}
(X) ⇒ σ({1, 3}) = {2, 1}

Thus σ(1) = 2, σ(2) = 5, σ(3) = 1, σ(4) = 4 and σ(5) = 3

Fundamental Properties of SSA
1. If C ′ = σ(C) then P ′(S ,C ′) = σ(P(S ,C))

2. The output of SSA(C) where C =< G > is independent of G

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 7/15

The Support Splitting Algorithm (II)
Practical Issues

A Good Signature
The mapping (C , i) 7→ WH(Ci)(X) where H(C) = C ∩ C⊥ is a signature
which is, for random codes,

I easy to compute because of the small dimension (Sendrier, 1997)

I discriminant, i.e. WH(Ci)(X) and WH(Cj)(X) are “often” different

Algorithmic Cost
Let C be a binary code of length n, and let h = dim(H(C)):

I First step: O(n3) +O(n2h)

I Each refinement: O(hn2) +O(n2h)

I Number of refinements: ≈ log n

Total (heuristic) complexity: O(n3 + 2hn2 log n)

Implementation
Currently developed on Gap and Magma

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 8/15

Structural Attacks on McEliece-like Cryptosystems
Binary Goppa Code
Let L = {α1, . . . , αn} ⊂ GF (2m) and g(z) ∈ GF (2m)[z] square-free of
degree t with g(αi) 6= 0.
Γ(L, g) = {(c1, . . . , cn) ∈ GF (2m) |

∑n
i=1

ci
z−αi

≡ 0 mod g(z)}

McEliece and Niederreiter Cryptosystems

I Γ a t-error correcting binary Goppa code

McEliece Niederreiter
secret key gen. matrix G0 of Γ parity check matrix H0 of Γ

permutation matrix P permutation matrix P
public key G = SG0P H = UH0P

Attacking McEliece Cryptosystem with SSA
1. Enumeration of all polynomial g of a family G of Γ(L, g) and check

equivalence with the public code

2. There are 2498.55 (m = 1024, t = 524) binary Goppa codes!

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 9/15

Weak Keys in the McEliece Cryptosystem

Weak Keys
Binary Goppa codes with binary generator polynomials g

Detection of Weak Keys with SSA
1. Compute SSA(C) = P(S ,C) where C is the public code

2. If the cardinalities of the cells of P are equal to the cardinalities of
the conjugacy cosets of L then C ∼ Γ(L, g) where g has binary
coefficients (with a high probability)

Enumerative Attack with SSA
1. For all binary polynomial g of given degree t compute
SSA(Γ(L, g)) = P ′(S , Γ(L, g))

2. If P ′(S , Γ(L, g)) ∼ P(S ,C) then return g

3. Efficient for Γ(L, g) of length 1024 with g of degree 50 using
idempotent subcodes (Loidreau and Sendrier, IEEE-IT, 2001)

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 10/15

Research Problems
Related to Coding Theory

Code Equivalence over GF (q), q > 2

Two linear codes C and C ′ of length n are equivalent over GF (q) if C ′

can be obtained from C by a series of transformations:

1. Permutation of the codeword positions

2. Multiplication in a position by non-zero elements of GF (q)

3. Application of field automorphism to all codeword positions

Research Problem
Given C and C ′ decide C ∼ C ′ over GF (q)?

Current Approach
Generalized SSA:

1. Codes with non-trivial automorphism groups

2. Codes with large hulls (i.e., self-dual, C = C⊥)

3. . . .

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 11/15

Research Problems
Related to Code-based Cryptography

Research Problem
Measure the key security of code-based cryptosystems over GF (q)

Wild McEliece Cryptosystem
Proposed by Bernstein, Lange and Peters, SAC, 2010

I Uses wild Goppa codes (g is in Fqm [x])

I Estimation of the key security with the generalized SSA?

Research Problem
Other structural attacks for code-based cryptosystems?

Detection of Weak Keys
Apply SSA for other (sub)-families of hidden codes

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 12/15

Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm
for solving the Code Equivalence problem for the binary case.

2. We showed a structural attack of SSA to code-based cryptosystems
(McEliece, Niederreiter).

Future Work
Solve (some) of the research problems..!

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 13/15

Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm
for solving the Code Equivalence problem for the binary case.

2. We showed a structural attack of SSA to code-based cryptosystems
(McEliece, Niederreiter).

Future Work
Solve (some) of the research problems..!

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 13/15

References

D. J. Bernstein, T. Lange and C. Peters, “Wild McEliece,” In SAC 2010,
Lecture Notes in Computer Science, vol. 6544, pp. 143–158.
Springer-Verlag, 2011.

P. Loidreau and N. Sendrier, “Weak keys in the McEliece public-key
cryptosystem,” IEEE Trans. Inf. Theory, vol. 47, pp. 1207–1211,2001.

R. Overbeck and N. Sendrier, “Code-based cryptography,” In D.
Bernstein, J. Buchmann and J. Ding (Eds.), Post-Quantum Cryptography,
pp 95–145. Springer, 2009.

E. Petrank and R. M. Roth, “Is code equivalence easy to decide?,” IEEE
Trans. Inf. Theory, vol. 43, pp. 1602–1604, 1997.

N. Sendrier, “On the dimension of the hull,” SIAM J. Discete Math., vol.
10, pp. 282–293, 1997.

N. Sendrier, “Finding the permutation between equivalent codes: the
support splitting algorithm,” IEEE Trans. Inf. Theory, vol. 46, pp.
1193–1203, 2000.

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 14/15

Questions - Comments

Thanks for your Attention!

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 15/15

	Support Splitting Algorithm
	Mechanics
	Examples

	Applications
	McEliece Cryptosystem
	Research Problems

	Conclusion

