The Support Splitting Algorithm and its Application to Code-based Cryptography

Dimitris E. Simos (joint work with Nicolas Sendrier)

Project-Team SECRET INRIA Paris-Rocquencourt

May 9, 2012 3RD CODE-BASED CRYPTOGRAPHY WORKSHOP Technical University of Denmark Lyngby, Denmark

Outline of the Talk

Support Splitting Algorithm

Mechanics Examples

Outline of the Talk

Support Splitting Algorithm

Mechanics Examples

Applications

McEliece Cryptosystem Research Problems

Code Equivalence

of Binary Codes

CODE EQUIVALENCE Problem

- ► Two linear codes C and C' of length n are (permutation)-equivalent if for some permutation σ of I_n = {1,..., n} we have: C' = σ(C) = {(x_σ⁻¹(i))_{i∈In} | (x_i)_{i∈In} ∈ C} Notation: C ~ C'.
- Given two linear codes C and C', do we have $C \sim C'$?

Motivation

CODE EQUIVALENCE is difficult to decide:

- 1. not NP-complete
- 2. at least as hard as GRAPH ISOMORPHISM

Reference: Petrank and Roth, IEEE-IT, 1997

Goal

Given two linear codes $C \sim C'$, find σ such that $C' = \sigma(C)$

Invariants and Signatures

for a given Linear Code

Invariants of a Code

- A mapping \mathcal{V} is an invariant if $C \sim C' \Rightarrow \mathcal{V}(C) = \mathcal{V}(C')$
- Any invariant is a global property of a code

Weight Enumerators are Invariants

$$\mathcal{C} \sim \mathcal{C}' \Rightarrow \mathcal{W}_{\mathcal{C}}(X) = \mathcal{W}_{\mathcal{C}'}(X) \text{ or } \mathcal{W}_{\mathcal{C}}(X) \neq \mathcal{W}_{\mathcal{C}'}(X) \Rightarrow \mathcal{C} \not\sim \mathcal{C}'$$

•
$$\mathcal{W}_C(X) = \sum_{i=0}^n A_i X^i$$
 and $A_i = |\{c \in C \mid w(c) = i\}|$

Signature of a Code

- A mapping S is a signature if $S(\sigma(C), \sigma(i)) = S(C, i)$
- Property of the code and one of its positions (local property)

Building a Signature from an Invariant

- 1. If \mathcal{V} is an invariant, then $S_{\mathcal{V}}: (C, i) \mapsto \mathcal{V}(C_{\{i\}})$ is a signature
- 2. where $C_{\{i\}}$ is obtained by puncturing the code C on i

3. If
$$C' = \sigma(C) \Rightarrow \mathcal{V}(C_{\{i\}}) = \mathcal{V}(C_{\{\sigma(i)\}}), \forall i \in I_n, i.e. \mathcal{V} = \mathcal{W}$$

Dimitris E. Simos (INRIA)

The Support Splitting Algorithm (I)

Design of the Algorithm

Discriminant Signatures

- 1. A signature S is discriminant for C if $\exists i \neq j, S(C, i) \neq S(C, j)$
- 2. S is fully discriminant for C if $\forall i \neq j, S(C, i) \neq S(C, j)$

The Procedure

- From a given signature S and a given code C, we wish to build a sequence S₀ = S, S₁,..., S_r of signatures of increasing "discriminancy" such that S_r is fully discriminant for C
- Achieved by succesive refinements of the signature S
- ► Reference: Sendrier, IEEE-IT, 2000

Statement

- 1. SSA(C) returns a labeled partition P(S, C) of I_n
- 2. Assuming the existence of a fully discriminant signature, SSA(C) recovers the desired permutation σ of $C' = \sigma(C)$

Dimitris E. Simos (INRIA)

An Example of a Fully Discriminant Signature

Statement

If $C' = \sigma(C)$ and S is fully discriminant for C then $\forall i \in I_n$ \exists unique $j \in I_n$ such that S(C, i) = S(C', j) and $\sigma(i) = j$

The Example

 $C = \{1110, 0111, 1010\}$ and $C' = \{0011, 1011, 1101\}$ $\left\{ \begin{array}{ll} C_{\{1\}} = \{110, 111, 010\} & \rightarrow & \mathcal{W}_{C_{\{1\}}}(X) = X + X^2 + X^3 \\ C_{\{2\}} = \{110, 011\} & \rightarrow & \mathcal{W}_{C_{\{2\}}}(X) = 2X^2 \\ C_{\{3\}} = \{110, 011, 100\} & \rightarrow & \mathcal{W}_{C_{\{3\}}}(X) = X + 2X^2 \\ C_{\{4\}} = \{111, 011, 101\} & \rightarrow & \mathcal{W}_{C_{\{4\}}}(X) = 2X^2 + X^3 \end{array} \right.$ $\left\{ \begin{array}{ll} C'_{\{1\}} = \{011, 101\} & \rightarrow & \mathcal{W}_{C'_{\{1\}}}(X) = 2X^2 \\ C'_{\{2\}} = \{011, 111, 101\} & \rightarrow & \mathcal{W}_{C'_{\{2\}}}(X) = 2X^2 + X^3 \\ C'_{\{3\}} = \{001, 101, 111\} & \rightarrow & \mathcal{W}_{C'_{\{3\}}}(X) = X + X^2 + X^3 \\ C'_{\{4\}} = \{001, 101, 110\} & \rightarrow & \mathcal{W}_{C'_{\{4\}}}(X) = X + 2X^2 \end{array} \right.$ $C' = \sigma(C)$ where $\sigma(1) = 3$, $\sigma(2) = 1$, $\sigma(3) = 4$ and $\sigma(4) = 2$

An Example of a Refined Signature The Example

$$C = \{01101, 01011, 01110, 10101, 1110\}$$

$$C' = \{10101, 00111, 10011, 11100, 11011\}$$

$$\{W_{C_{\{1\}}}(X) = X^2 + 3X^3 = W_{C'_{\{2\}}}(X) \Rightarrow \sigma(1) = 2$$

$$W_{C_{\{4\}}}(X) = 2X^2 + 3X^3 = W_{C'_{\{4\}}}(X) \Rightarrow \sigma(4) = 4$$

$$W_{C_{\{5\}}}(X) = 3X^2 + X^3 + X^4 = W_{C'_{\{3\}}}(X) \Rightarrow \sigma(5) = 3$$

$$W_{C_{\{2\}}}(X) = 3X^2 + 2X^3 = W_{C'_{\{5\}}}(X)$$

Refinement: Positions $\{2,3\}$ in C and $\{1,5\}$ in C' cannot be discriminated, but

$$\begin{cases} \mathcal{W}_{C_{\{1,2\}}}(X) = 3X^2 = \mathcal{W}_{C'_{\{2,5\}}}(X) \Rightarrow \sigma(\{1,2\}) = \{2,5\} \\ \mathcal{W}_{C_{\{1,3\}}}(X) = X + 2X^2 + X^3 = \mathcal{W}_{C'_{\{2,1\}}}(X) \Rightarrow \sigma(\{1,3\}) = \{2,1\} \end{cases}$$

Thus $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 4$ and $\sigma(5) = 3$

Fundamental Properties of SSA

1. If
$$C' = \sigma(C)$$
 then $\mathcal{P}'(S, C') = \sigma(\mathcal{P}(S, C))$

2. The **output** of SSA(C) where $C = \langle G \rangle$ is independent of G

Dimitris E. Simos (INRIA)

The Support Splitting Algorithm (II)

Practical Issues

A Good Signature

The mapping $(C, i) \mapsto W_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$ is a signature which is, for random codes,

- easy to compute because of the small dimension (Sendrier, 1997)
- ▶ discriminant, i.e. $W_{\mathcal{H}(C_i)}(X)$ and $W_{\mathcal{H}(C_j)}(X)$ are "often" different

Algorithmic Cost

Let C be a binary code of length n, and let $h = \dim(\mathcal{H}(C))$:

- First step: $\mathcal{O}(n^3) + \mathcal{O}(n2^h)$
- Each refinement: $\mathcal{O}(hn^2) + \mathcal{O}(n2^h)$
- Number of refinements: $\approx \log n$

Total (heuristic) complexity: $\mathcal{O}(n^3 + 2^h n^2 \log n)$

Implementation

Currently developed on $\ensuremath{\mathbf{GAP}}$ and $\ensuremath{\mathbf{MAGMA}}$

Structural Attacks on McEliece-like Cryptosystems

Binary Goppa Code Let $L = \{\alpha_1, \dots, \alpha_n\} \subset GF(2^m)$ and $g(z) \in GF(2^m)[z]$ square-free of degree t with $g(\alpha_i) \neq 0$. $\Gamma(L,g) = \{(c_1, \dots, c_n) \in GF(2^m) \mid \sum_{i=1}^n \frac{c_i}{z - \alpha_i} \equiv 0 \mod g(z)\}$

McEliece and Niederreiter Cryptosystems

Γ a t-error correcting binary Goppa code

	McEliece	Niederreiter
secret key	gen. matrix G_0 of Γ	parity check matrix H_0 of Γ
	permutation matrix P	permutation matrix P
public key	$G = SG_0P$	$H = UH_0P$

Attacking McEliece Cryptosystem with \mathcal{SSA}

- 1. Enumeration of all polynomial g of a family \mathcal{G} of $\Gamma(L,g)$ and check equivalence with the public code
- 2. There are $2^{498.55}$ (m = 1024, t = 524) binary Goppa codes!

Dimitris E. Simos (INRIA)

Weak Keys in the McEliece Cryptosystem

Weak Keys

Binary Goppa codes with binary generator polynomials g

Detection of Weak Keys with \mathcal{SSA}

- 1. **Compute** SSA(C) = P(S, C) where C is the public code
- 2. If the cardinalities of the cells of \mathcal{P} are equal to the cardinalities of the conjugacy cosets of L then $C \sim \Gamma(L,g)$ where g has binary coefficients (with a high probability)

Enumerative Attack with \mathcal{SSA}

- 1. For all binary polynomial g of given degree t compute $SSA(\Gamma(L,g)) = \mathcal{P}'(S,\Gamma(L,g))$
- 2. If $\mathcal{P}'(S, \Gamma(L, g)) \sim \mathcal{P}(S, C)$ then return g
- 3. Efficient for $\Gamma(L, g)$ of length 1024 with g of degree 50 using idempotent subcodes (Loidreau and Sendrier, IEEE-IT, 2001)

Research Problems

Related to Coding Theory

CODE EQUIVALENCE over GF(q), q > 2

Two linear codes C and C' of length n are equivalent over GF(q) if C' can be obtained from C by a series of transformations:

- 1. Permutation of the codeword positions
- 2. Multiplication in a position by non-zero elements of GF(q)
- 3. Application of field automorphism to all codeword positions

Research Problem Given C and C' decide $C \sim C'$ over GF(q)?

Current Approach

Generalized SSA:

- 1. Codes with non-trivial automorphism groups
- 2. Codes with large hulls (i.e., self-dual, $C = C^{\perp}$)

3. ...

Research Problems

Related to Code-based Cryptography

Research Problem

Measure the key security of code-based cryptosystems over GF(q)

Wild McEliece Cryptosystem

Proposed by Bernstein, Lange and Peters, SAC, 2010

- Uses wild Goppa codes $(g \text{ is in } \mathbb{F}_{q^m}[x])$
- Estimation of the key security with the generalized SSA?

Research Problem

Other structural attacks for code-based cryptosystems?

Detection of Weak Keys

Apply SSA for other (sub)-families of hidden codes

Summary

Highlights

- 1. We presented the basic concepts of the support splitting algorithm for solving the CODE EQUIVALENCE problem for the binary case.
- 2. We showed a structural attack of *SSA* to code-based cryptosystems (McEliece, Niederreiter).

Summary

Highlights

- 1. We presented the basic concepts of the support splitting algorithm for solving the CODE EQUIVALENCE problem for the binary case.
- 2. We showed a structural attack of *SSA* to code-based cryptosystems (McEliece, Niederreiter).

Future Work Solve (some) of the research problems..!

References

D. J. Bernstein, T. Lange and C. Peters, "Wild McEliece," In SAC 2010, Lecture Notes in Computer Science, vol. 6544, pp. 143-158. Springer-Verlag, 2011.

P. Loidreau and N. Sendrier, "Weak keys in the McEliece public-key cryptosystem," IEEE Trans. Inf. Theory, vol. 47, pp. 1207–1211,2001.

R. Overbeck and N. Sendrier, "Code-based cryptography," In D. Bernstein, J. Buchmann and J. Ding (Eds.), Post-Quantum Cryptography, pp 95-145. Springer, 2009.

E. Petrank and R. M. Roth, "Is code equivalence easy to decide?," IEEE Trans. Inf. Theory, vol. 43, pp. 1602–1604, 1997.

N. Sendrier, "Finding the permutation between equivalent codes: the support splitting algorithm," IEEE Trans. Inf. Theory, vol. 46, pp. 1193-1203. 2000.

Questions - Comments

Thanks for your Attention!

