The Support Splitting Algorithm and its Application to Code-based Cryptography

Dimitris E. Simos
(joint work with Nicolas Sendrier)

Project-Team SECRET
INRIA Paris-Rocquencourt

May 9, 2012
3rd Code-based Cryptography Workshop
Technical University of Denmark
Lyngby, Denmark

Outline of the Talk

Support Splitting Algorithm
Mechanics
Examples

Outline of the Talk

Support Splitting Algorithm
Mechanics

Examples

Applications
McEliece Cryptosystem
Research Problems

Code Equivalence

of Binary Codes

Code Equivalence Problem

- Two linear codes C and C^{\prime} of length n are (permutation)-equivalent if for some permutation σ of $I_{n}=\{1, \ldots, n\}$ we have: $C^{\prime}=\sigma(C)=\left\{\left(x_{\sigma^{-1}(i)}\right)_{i \in I_{n}} \mid\left(x_{i}\right)_{i \in I_{n}} \in C\right\}$ Notation: $C \sim C^{\prime}$.
- Given two linear codes C and C^{\prime}, do we have $C \sim C^{\prime}$?

Motivation

Code equivalence is difficult to decide:

1. not NP-complete
2. at least as hard as Graph Isomorphism

Reference: Petrank and Roth, IEEE-IT, 1997
Goal
Given two linear codes $C \sim C^{\prime}$, find σ such that $C^{\prime}=\sigma(C)$

Invariants and Signatures

for a given Linear Code
Invariants of a Code

- A mapping \mathcal{V} is an invariant if $C \sim C^{\prime} \Rightarrow \mathcal{V}(C)=\mathcal{V}\left(C^{\prime}\right)$
- Any invariant is a global property of a code

Weight Enumerators are Invariants

$$
\begin{aligned}
C & \sim C^{\prime} \Rightarrow \mathcal{W}_{C}(X)=\mathcal{W}_{C^{\prime}}(X) \text { or } \mathcal{W}_{C}(X) \neq \mathcal{W}_{C^{\prime}}(X) \Rightarrow C \nsim C^{\prime} \\
& \bullet \mathcal{W}_{C}(X)=\sum_{i=0}^{n} A_{i} X^{i} \text { and } A_{i}=|\{c \in C \mid w(c)=i\}|
\end{aligned}
$$

Signature of a Code

- A mapping S is a signature if $S(\sigma(C), \sigma(i))=S(C, i)$
- Property of the code and one of its positions (local property)

Building a Signature from an Invariant

1. If \mathcal{V} is an invariant, then $S_{\mathcal{V}}:(C, i) \mapsto \mathcal{V}\left(C_{\{i\}}\right)$ is a signature
2. where $C_{\{i\}}$ is obtained by puncturing the code C on i
3. If $C^{\prime}=\sigma(C) \Rightarrow \mathcal{V}\left(C_{\{i\}}\right)=\mathcal{V}\left(C_{\{\sigma(i)\}}^{\prime}\right), \forall i \in I_{n}$, i.e. $\mathcal{V}=\mathcal{W}$

The Support Splitting Algorithm (I)

Design of the Algorithm

Discriminant Signatures

1. A signature S is discriminant for C if $\exists i \neq j, S(C, i) \neq S(C, j)$
2. S is fully discriminant for C if $\forall i \neq j, S(C, i) \neq S(C, j)$

The Procedure

- From a given signature S and a given code C, we wish to build a sequence $S_{0}=S, S_{1}, \ldots, S_{r}$ of signatures of increasing "discriminancy" such that S_{r} is fully discriminant for C
- Achieved by succesive refinements of the signature S
- Reference: Sendrier, IEEE-IT, 2000

Statement

1. $\mathcal{S S A} \mathcal{A}(C)$ returns a labeled partition $\mathcal{P}(S, C)$ of I_{n}
2. Assuming the existence of a fully discriminant signature, $\mathcal{S S A}(C)$ recovers the desired permutation σ of $C^{\prime}=\sigma(C)$

An Example of a Fully Discriminant Signature

Statement

If $C^{\prime}=\sigma(C)$ and S is fully discriminant for C then $\forall i \in I_{n}$
\exists unique $j \in I_{n}$ such that $S(C, i)=S\left(C^{\prime}, j\right)$ and $\sigma(i)=j$
The Example

$$
\begin{gathered}
C=\{1110,0111,1010\} \text { and } C^{\prime}=\{0011,1011,1101\} \\
\left\{\begin{array}{llll}
C_{\{1\}}=\{110,111,010\} & \rightarrow & \mathcal{W}_{C_{\{1\}}}(X)=X+X^{2}+X^{3} \\
C_{\{2\}}=\{110,011\} & \rightarrow & \mathcal{W}_{C_{\{2\}}}(X)=2 X^{2} \\
C_{\{3\}}=\{110,011,100\} & \rightarrow & \mathcal{W}_{\{3\}}(X)=X+2 X^{2} \\
C_{\{4\}}=\{111,011,101\} & \rightarrow & \mathcal{W}_{\{4\}}(X)=2 X^{2}+X^{3}
\end{array}\right. \\
\left\{\begin{array}{lll}
C_{\{1\}}^{\prime}=\{011,101\} & \rightarrow & \mathcal{W}_{C_{\{1\}}^{\prime}}^{\prime}(X)=2 X^{2} \\
C_{\{2\}}^{1}=\{011,111,101\} & \rightarrow & \mathcal{W}_{C_{\{2\}}^{\prime}}^{\prime}(X)=2 X^{2}+X^{3} \\
C_{\{3\}}^{\prime}=\{001,101,111\} & \rightarrow & \mathcal{W}_{C_{\{3\}}^{\prime}}^{\prime}(X)=X+X^{2}+X^{3} \\
C_{\{4\}}^{\prime}=\{001,101,110\} & \rightarrow & \mathcal{W}_{C_{\{4\}}^{\prime}}^{\prime}(X)=X+2 X^{2}
\end{array}\right. \\
C^{\prime}=\sigma(C) \text { where } \sigma(1)=3, \sigma(2)=1, \sigma(3)=4 \text { and } \sigma(4)=2
\end{gathered}
$$

An Example of a Refined Signature

The Example

$$
\begin{gathered}
C=\{01101,01011,01110,10101,11110\} \\
C^{\prime}=\{10101,00111,10011,11100,11011\} \\
\left\{\begin{array}{l}
\mathcal{W}_{C_{\{1\}}}(X)=X^{2}+3 X^{3}=\mathcal{W}_{C_{\{2\}}^{\prime}}(X) \Rightarrow \sigma(1)=2 \\
\mathcal{W}_{C_{\{4\}}}(X)=2 X^{2}+3 X^{3}=\mathcal{W}_{C_{\{4\}}^{\prime}}(X) \Rightarrow \sigma(4)=4 \\
\mathcal{W}_{C_{\{5\}}}(X)=3 X^{2}+X^{3}+X^{4}=\mathcal{W}_{C^{\prime}}(X) \Rightarrow \sigma(5)=3 \\
\mathcal{W}_{C_{\{2\}}}(X)=3 X^{2}+2 X^{3} \\
\mathcal{W}_{C_{\{3\}}}(X)=3 X^{2}+2 X^{3}=\mathcal{W}_{C_{\{1\}}^{\prime}}(X) \\
=\mathcal{W}_{C_{\{5\}}^{\prime}}(X)
\end{array}\right.
\end{gathered}
$$

Refinement: Positions $\{2,3\}$ in C and $\{1,5\}$ in C^{\prime} cannot be discriminated, but

$$
\begin{cases}\mathcal{W}_{C_{\{1,2\}}}(X)=3 X^{2} & =\mathcal{W}_{C_{\{2,5\}}^{\prime}}(X) \\ \mathcal{W}_{C_{\{1,3\}}}(X)=X+2 X^{2}+X^{3}=\mathcal{W}_{C_{\{2,1\}}^{\prime}}(X) \Rightarrow \sigma(\{1,2\})=\{2,5\} \\ \Rightarrow \sigma(\{1,3\})=\{2,1\}\end{cases}
$$

Thus $\sigma(1)=2, \sigma(2)=5, \sigma(3)=1, \sigma(4)=4$ and $\sigma(5)=3$
Fundamental Properties of $\mathcal{S S A}$

1. If $C^{\prime}=\sigma(C)$ then $\mathcal{P}^{\prime}\left(S, C^{\prime}\right)=\sigma(\mathcal{P}(S, C))$
2. The output of $\mathcal{S S} \mathcal{A}(C)$ where $C=\langle G>$ is independent of G

The Support Splitting Algorithm (II)

Practical Issues

A Good Signature

The mapping $(C, i) \mapsto \mathcal{W}_{\mathcal{H}\left(C_{i}\right)}(X)$ where $\mathcal{H}(C)=C \cap C^{\perp}$ is a signature which is, for random codes,

- easy to compute because of the small dimension (Sendrier, 1997)
- discriminant, i.e. $\mathcal{W}_{\mathcal{H}\left(c_{i}\right)}(X)$ and $\mathcal{W}_{\mathcal{H}\left(c_{j}\right)}(X)$ are "often" different

Algorithmic Cost

Let C be a binary code of length n, and let $h=\operatorname{dim}(\mathcal{H}(C))$:

- First step: $\mathcal{O}\left(n^{3}\right)+\mathcal{O}\left(n 2^{h}\right)$
- Each refinement: $\mathcal{O}\left(h n^{2}\right)+\mathcal{O}\left(n 2^{h}\right)$
- Number of refinements: $\approx \log n$

Total (heuristic) complexity: $\mathcal{O}\left(n^{3}+2^{h} n^{2} \log n\right)$
Implementation
Currently developed on Gap and Magma

Structural Attacks on McEliece-like Cryptosystems

Binary Goppa Code
Let $L=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset G F\left(2^{m}\right)$ and $g(z) \in G F\left(2^{m}\right)[z]$ square-free of degree t with $g\left(\alpha_{i}\right) \neq 0$.
$\Gamma(L, g)=\left\{\left(c_{1}, \ldots, c_{n}\right) \in G F\left(2^{m}\right) \left\lvert\, \sum_{i=1}^{n} \frac{c_{i}}{z-\alpha_{i}} \equiv 0 \bmod g(z)\right.\right\}$
McEliece and Niederreiter Cryptosystems

- 「 a t-error correcting binary Goppa code

	McEliece	Niederreiter
secret key	gen. matrix G_{0} of Γ permutation matrix P	parity check matrix H_{0} of Γ permutation matrix P
public key	$G=S G_{0} P$	$H=U H_{0} P$

Attacking McEliece Cryptosystem with $\mathcal{S S A}$

1. Enumeration of all polynomial g of a family \mathcal{G} of $\Gamma(L, g)$ and check equivalence with the public code
2. There are $2^{498.55}(m=1024, t=524)$ binary Goppa codes!

Weak Keys in the McEliece Cryptosystem

Weak Keys
Binary Goppa codes with binary generator polynomials g
Detection of Weak Keys with $\mathcal{S S A}$

1. Compute $\mathcal{S S A}(C)=\mathcal{P}(S, C)$ where C is the public code
2. If the cardinalities of the cells of \mathcal{P} are equal to the cardinalities of the conjugacy cosets of L then $C \sim \Gamma(L, g)$ where g has binary coefficients (with a high probability)

Enumerative Attack with $\mathcal{S S} \mathcal{A}$

1. For all binary polynomial g of given degree t compute $\mathcal{S S A}(\Gamma(L, g))=\mathcal{P}^{\prime}(S, \Gamma(L, g))$
2. If $\mathcal{P}^{\prime}(S, \Gamma(L, g)) \sim \mathcal{P}(S, C)$ then return g
3. Efficient for $\Gamma(L, g)$ of length 1024 with g of degree 50 using idempotent subcodes (Loidreau and Sendrier, IEEE-IT, 2001)

Research Problems

Related to Coding Theory
Code Equivalence over $G F(q), q>2$
Two linear codes C and C^{\prime} of length n are equivalent over $G F(q)$ if C^{\prime} can be obtained from C by a series of transformations:

1. Permutation of the codeword positions
2. Multiplication in a position by non-zero elements of $G F(q)$
3. Application of field automorphism to all codeword positions

Research Problem

Given C and C^{\prime} decide $C \sim C^{\prime}$ over $G F(q)$?

Current Approach

Generalized $\mathcal{S S} \mathcal{A}$:

1. Codes with non-trivial automorphism groups
2. Codes with large hulls (i.e., self-dual, $C=C^{\perp}$)
3. ...

Research Problems

```
Related to Code-based Cryptography
```


Research Problem

Measure the key security of code-based cryptosystems over $\operatorname{GF}(q)$
Wild McEliece Cryptosystem
Proposed by Bernstein, Lange and Peters, SAC, 2010

- Uses wild Goppa codes (g is in $\mathbb{F}_{q^{m}}[x]$)
- Estimation of the key security with the generalized $\mathcal{S S} \mathcal{A}$?

Research Problem
Other structural attacks for code-based cryptosystems?
Detection of Weak Keys
Apply $\mathcal{S S A}$ for other (sub)-families of hidden codes

Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm for solving the Code Equivalence problem for the binary case.
2. We showed a structural attack of $\mathcal{S S} \mathcal{A}$ to code-based cryptosystems (McEliece, Niederreiter).

Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm for solving the Code Equivalence problem for the binary case.
2. We showed a structural attack of $\mathcal{S S} \mathcal{A}$ to code-based cryptosystems (McEliece, Niederreiter).

Future Work
Solve (some) of the research problems..!

References

D. J. Bernstein, T. Lange and C. Peters, "Wild McEliece," In SAC 2010, Lecture Notes in Computer Science, vol. 6544, pp. 143-158. Springer-Verlag, 2011.

P. Loidreau and N. Sendrier, "Weak keys in the McEliece public-key cryptosystem," IEEE Trans. Inf. Theory, vol. 47, pp. 1207-1211,2001.
R. Overbeck and N. Sendrier, "Code-based cryptography," In D. Bernstein, J. Buchmann and J. Ding (Eds.), Post-Quantum Cryptography, pp 95-145. Springer, 2009.
目
E. Petrank and R. M. Roth, "Is code equivalence easy to decide?," IEEE Trans. Inf. Theory, vol. 43, pp. 1602-1604, 1997.
R N. Sendrier, "On the dimension of the hull," SIAM J. Discete Math., vol. 10, pp. 282-293, 1997.
(N. Sendrier, "Finding the permutation between equivalent codes: the support splitting algorithm," IEEE Trans. Inf. Theory, vol. 46, pp. 1193-1203, 2000.

Questions - Comments

Thanks for your Attention!

