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Code Equivalence
of Binary Codes

Code Equivalence Problem

I Two linear codes C and C ′ of length n are (permutation)-equivalent
if for some permutation σ of In = {1, . . . , n} we have:
C ′ = σ(C ) = {(xσ−1(i))i∈In | (xi )i∈In ∈ C}
Notation: C ∼ C ′.

I Given two linear codes C and C ′, do we have C ∼ C ′?

Motivation
Code equivalence is difficult to decide:

1. not NP-complete

2. at least as hard as Graph Isomorphism

Reference: Petrank and Roth, IEEE-IT, 1997

Goal
Given two linear codes C ∼ C ′, find σ such that C ′ = σ(C )
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Invariants and Signatures
for a given Linear Code

Invariants of a Code

I A mapping V is an invariant if C ∼ C ′ ⇒ V(C ) = V(C ′)
I Any invariant is a global property of a code

Weight Enumerators are Invariants
C ∼ C ′ ⇒WC (X ) =WC ′(X ) or WC (X ) 6=WC ′(X )⇒ C 6∼ C ′

I WC (X ) =
∑n

i=0 AiX
i and Ai =| {c ∈ C | w(c) = i} |

Signature of a Code

I A mapping S is a signature if S(σ(C ), σ(i)) = S(C , i)
I Property of the code and one of its positions (local property)

Building a Signature from an Invariant

1. If V is an invariant, then SV : (C , i) 7→ V(C{i}) is a signature
2. where C{i} is obtained by puncturing the code C on i
3. If C ′ = σ(C )⇒ V(C{i}) = V(C ′{σ(i)}), ∀ i ∈ In, i.e. V =W
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The Support Splitting Algorithm (I)
Design of the Algorithm

Discriminant Signatures

1. A signature S is discriminant for C if ∃ i 6= j ,S(C , i) 6= S(C , j)

2. S is fully discriminant for C if ∀ i 6= j ,S(C , i) 6= S(C , j)

The Procedure

I From a given signature S and a given code C , we wish to build a
sequence S0 = S ,S1, . . . ,Sr of signatures of increasing
“discriminancy” such that Sr is fully discriminant for C

I Achieved by succesive refinements of the signature S

I Reference: Sendrier, IEEE-IT, 2000

Statement

1. SSA(C ) returns a labeled partition P(S ,C ) of In

2. Assuming the existence of a fully discriminant signature, SSA(C )
recovers the desired permutation σ of C ′ = σ(C )
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An Example of a Fully Discriminant Signature

Statement
If C ′ = σ(C ) and S is fully discriminant for C then ∀ i ∈ In
∃ unique j ∈ In such that S(C , i) = S(C ′, j) and σ(i) = j

The Example

C = {1110, 0111, 1010} and C ′ = {0011, 1011, 1101}
C{1} = {110, 111, 010} → WC{1}(X ) = X + X 2 + X 3

C{2} = {110, 011} → WC{2}(X ) = 2X 2

C{3} = {110, 011, 100} → WC{3}(X ) = X + 2X 2

C{4} = {111, 011, 101} → WC{4}(X ) = 2X 2 + X 3
C ′{1} = {011, 101} → WC ′{1}

(X ) = 2X 2

C ′{2} = {011, 111, 101} → WC ′{2}
(X ) = 2X 2 + X 3

C ′{3} = {001, 101, 111} → WC ′{3}
(X ) = X + X 2 + X 3

C ′{4} = {001, 101, 110} → WC ′{4}
(X ) = X + 2X 2

C ′ = σ(C ) where σ(1) = 3, σ(2) = 1, σ(3) = 4 and σ(4) = 2

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 6/15



An Example of a Refined Signature
The Example

C = {01101, 01011, 01110, 10101, 11110}
C ′ = {10101, 00111, 10011, 11100, 11011}

WC{1} (X ) = X 2 + 3X 3 = WC′{2}
(X ) ⇒ σ(1) = 2

WC{4} (X ) = 2X 2 + 3X 3 = WC′{4}
(X ) ⇒ σ(4) = 4

WC{5} (X ) = 3X 2 + X 3 + X 4 = WC′{3}
(X ) ⇒ σ(5) = 3

WC{2} (X ) = 3X 2 + 2X 3 = WC′{1}
(X )

WC{3} (X ) = 3X 2 + 2X 3 = WC′{5}
(X )

Refinement: Positions {2, 3} in C and {1, 5} in C ′ cannot be discriminated, but WC{1,2} (X ) = 3X 2 = WC′{2,5}
(X ) ⇒ σ({1, 2}) = {2, 5}

WC{1,3} (X ) = X + 2X 2 + X 3 = WC′{2,1}
(X ) ⇒ σ({1, 3}) = {2, 1}

Thus σ(1) = 2, σ(2) = 5, σ(3) = 1, σ(4) = 4 and σ(5) = 3

Fundamental Properties of SSA
1. If C ′ = σ(C ) then P ′(S ,C ′) = σ(P(S ,C ))

2. The output of SSA(C ) where C =< G > is independent of G
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The Support Splitting Algorithm (II)
Practical Issues

A Good Signature
The mapping (C , i) 7→ WH(Ci )(X ) where H(C ) = C ∩ C⊥ is a signature
which is, for random codes,

I easy to compute because of the small dimension (Sendrier, 1997)

I discriminant, i.e. WH(Ci )(X ) and WH(Cj )(X ) are “often” different

Algorithmic Cost
Let C be a binary code of length n, and let h = dim(H(C )):

I First step: O(n3) +O(n2h)

I Each refinement: O(hn2) +O(n2h)

I Number of refinements: ≈ log n

Total (heuristic) complexity: O(n3 + 2hn2 log n)

Implementation
Currently developed on Gap and Magma

Dimitris E. Simos (INRIA) CBC2012 @ DTU, Denmark 8/15



Structural Attacks on McEliece-like Cryptosystems
Binary Goppa Code
Let L = {α1, . . . , αn} ⊂ GF (2m) and g(z) ∈ GF (2m)[z ] square-free of
degree t with g(αi ) 6= 0.
Γ(L, g) = {(c1, . . . , cn) ∈ GF (2m) |

∑n
i=1

ci
z−αi

≡ 0 mod g(z)}

McEliece and Niederreiter Cryptosystems

I Γ a t-error correcting binary Goppa code

McEliece Niederreiter
secret key gen. matrix G0 of Γ parity check matrix H0 of Γ

permutation matrix P permutation matrix P
public key G = SG0P H = UH0P

Attacking McEliece Cryptosystem with SSA
1. Enumeration of all polynomial g of a family G of Γ(L, g) and check

equivalence with the public code

2. There are 2498.55 (m = 1024, t = 524) binary Goppa codes!
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Weak Keys in the McEliece Cryptosystem

Weak Keys
Binary Goppa codes with binary generator polynomials g

Detection of Weak Keys with SSA
1. Compute SSA(C ) = P(S ,C ) where C is the public code

2. If the cardinalities of the cells of P are equal to the cardinalities of
the conjugacy cosets of L then C ∼ Γ(L, g) where g has binary
coefficients (with a high probability)

Enumerative Attack with SSA
1. For all binary polynomial g of given degree t compute
SSA(Γ(L, g)) = P ′(S , Γ(L, g))

2. If P ′(S , Γ(L, g)) ∼ P(S ,C ) then return g

3. Efficient for Γ(L, g) of length 1024 with g of degree 50 using
idempotent subcodes (Loidreau and Sendrier, IEEE-IT, 2001)
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Research Problems
Related to Coding Theory

Code Equivalence over GF (q), q > 2

Two linear codes C and C ′ of length n are equivalent over GF (q) if C ′

can be obtained from C by a series of transformations:

1. Permutation of the codeword positions

2. Multiplication in a position by non-zero elements of GF (q)

3. Application of field automorphism to all codeword positions

Research Problem
Given C and C ′ decide C ∼ C ′ over GF (q)?

Current Approach
Generalized SSA:

1. Codes with non-trivial automorphism groups

2. Codes with large hulls (i.e., self-dual, C = C⊥)

3. . . .
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Research Problems
Related to Code-based Cryptography

Research Problem
Measure the key security of code-based cryptosystems over GF (q)

Wild McEliece Cryptosystem
Proposed by Bernstein, Lange and Peters, SAC, 2010

I Uses wild Goppa codes (g is in Fqm [x ])

I Estimation of the key security with the generalized SSA?

Research Problem
Other structural attacks for code-based cryptosystems?

Detection of Weak Keys
Apply SSA for other (sub)-families of hidden codes
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Summary

Highlights

1. We presented the basic concepts of the support splitting algorithm
for solving the Code Equivalence problem for the binary case.

2. We showed a structural attack of SSA to code-based cryptosystems
(McEliece, Niederreiter).

Future Work
Solve (some) of the research problems..!
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Questions - Comments

Thanks for your Attention!
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